活动区日冕物质抛射的形成条件及产生规律
[Abstract]:Coronal mass ejection (CME) is the most violent eruption phenomenon in the solar atmosphere and the main driving force of disastrous space weather. Its main source area is the solar active region (AR): more than 60% of CME is generated from the active region. But the explosive capacity of the active region is also different, some of the active regions are difficult to produce CME, and some can produce a lot of CME in a short time. E. What kind of active areas can produce CME? Why can some active areas produce CME frequently? Our work attempts to answer these two questions. To answer the first question, we compared NOAA 12192, an active area with frequent flares but few CME outbreaks, with four other active areas, two of which were produced. Many flares and CMEs, and few CMEs are produced in the other two active regions. By comparing the parameters of the photospherical vector magnetic field of SDO/HMI, we find that the three active regions which can produce many flares have larger flux, current and magnetic free energy than the other two inert active regions, i.e. they have larger area and contain a strong current system. Because sufficient magnetic free energy is a necessary condition for driving flares, this conclusion is understandable and consistent with previous studies. Further, we find that the CME bursting ability of the flares can be distinguished by combining the average current helicity and the total unsigned current helicity. The average current helicity (| Hc |) in the active region is large, but the values of NOAA 12192 and the other two active regions NOAA 11157 and 11428, which only produce many flares, are small. Considering the unsigned current helicity (Hctotal), the values of NOAA 12192 in the active region are the same as those of NOAA 11158, 11429 CME. In addition, by analyzing the current helicity distribution before the outbreak, we find that there is a concentration of strong current helicity on both sides of the main neutral line of the two active areas of CME, indicating that there is a magnetic rope in the two active areas. The decay factor of extrapolated coronal magnetic field shows that their coronal binding field also decays faster and weaker, and correspondingly, there is no such strong current helicity along both sides of the neutral line in the three active regions where there is no explosion or only flare. For the second problem, we first studied the waiting time of 281 quasi-homologous CMEs (CMEs from the same active region) from 28 superactive regions of the 23rd solar cycle. The first part is a Gaussian-like distribution with a peak value of about 7 hours. Statistically, there is a physical correlation between the CMEs falling in this component. The peak waiting time may be a time scale for the development of physical processes involved in quasi-homologous CMEs. We add two super-active regions of solar cycle 24: NOAA 11158 and 11429 to the sample and find that the waiting time still presents a two-component distribution. Among them, 188 quasi-homologous CMEs have a waiting time of less than 18 hours, showing a Gaussian-like score. We further pinpointed 142 quasi-homologous CMEs with waiting times of less than 18 hours: defined the same position of the same neutral line as the same magnetic source area, and different positions or neutrals of the same neutral line as different magnetic source areas; for a CME, if it is before it Finally, 90 (63%) S-type quasi-homologous CMEs and 52 (37%) D-type quasi-homologous CMEs were obtained. We further selected one case in each of the two quasi-homologous CMEs: the S-type quasi-homologous CME and its predecessor CME were all produced in the quadrupole field NOAA. A dipole system in 11158, two CMEs in the D-type quasi-homologous event originate from two different magnetic flux systems in ARNOAA 11429. Through detailed analysis of two cases, including attenuation exponent n, extrusion factor Q and the number of coils Tw, we find that in the S-type quasi-homologous CME, the magnetic rope undergoes a partial explosion. PROCESS: One part of the magnetic rope explodes into the first CME, while the other part remains and then explodes to form the second CME. This process can be regarded as a multi-stage release process of free energy. The main cause of a series of S-type CME bursts. In the D-type CME bursts, a magnetic rope on a neutral line partially explodes, forming the first CME and affecting the source region of the second CME, causing the upper branch of the two magnetic ropes above to erupt with the first CME. Since the upper branch of the magnetic rope is chirally opposite to the lower branch, it is originally paired down. The downward binding force exerted by the supporting magnetic rope disappears after its explosion, allowing the lower magnetic rope to expand, rise, and obtain greater spiral coiling through reconnection. Finally, the core magnetic rope of the second CME explodes, forming a second CME. These two types of CMEs may involve different physical processes: the S-type CME and the CME before it. In the process of repeated release of magnetic free energy, the D-type CME is more likely to be caused by the CME perturbation before it. The different peak values of the waiting time may be the characteristic time involved in the two different physical processes.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:P182.62
【相似文献】
相关期刊论文 前10条
1 张小莲;;体育活动区活动初探[J];科技信息;2009年22期
2 朱祖彦;δ结构活动区早期演化的特点[J];紫金山天文台台刊;1994年01期
3 韩正忠,周树荣,吴琴娣,方成;活动区特征的模糊统计与综合评估研究[J];中国科学(A辑);2001年03期
4 吴蓓,,宋慕陶,胡福民;几个活动区精细H_α结构的物理浅析[J];天体物理学报;1994年02期
5 凌英;;浅谈中班数学活动区中材料的提供[J];科学大众;2008年05期
6 邹荣;;幼儿园区域活动的物质环境创设[J];科技信息;2010年21期
7 薄凤英;齐会杰;薄树恒;;浅谈教师在区域活动中的作用[J];科技资讯;2009年20期
8 朱祖彦;;产生太阳大事件的活动区的一些特征[J];紫金山天文台台刊;1992年03期
9 张柏荣,李秋莎;太阳23周活动上升期的4个大活动区概述[J];云南天文台台刊;2000年02期
10 田莉荣,张洪起,包曙东;活动区磁场的不同缠绕形式(英文)[J];北京师范大学学报(自然科学版);2000年04期
相关会议论文 前10条
1 李玲;;让幼儿互动 让环境说话——主题探究活动《我和动物交朋友》[A];国家教师科研基金十一五阶段性成果集(安徽卷)[C];2010年
2 赵晓曼;;户外活动引发的反思[A];国家教师科研基金十一五阶段性成果集(安徽卷)[C];2010年
3 叶书静;;如何在区域活动中发挥孩子的自主性[A];河北省教师教育学会优秀课题成果论坛论文集[C];2012年
4 胡灿实;宋哠;叶元兴;庆保平;王超;丁长青;;朱瀗活动性研究[A];第十二届全国鸟类学术研讨会暨第十届海峡两岸鸟类学术研讨会论文摘要集[C];2013年
5 张桂清;;两个相似多发CME活动区的演化、爆发和日地物理效应[A];第五届全国日地关系与灾害学术研讨会论文专辑[C];2005年
6 王国栋;冯雪松;李建强;张正旺;;褐马鸡的活动区与扩散行为研究[A];野生动物生态与资源保护第三届全国学术研讨会论文摘要集[C];2006年
7 邱彬;;基于源区位置统计结果的CME和CME多产活动区的关系研究[A];第十四届全国日地空间物理学术研讨会论文集[C];2011年
8 周玮;;区域活动中材料投放与幼儿主动发展[A];国家教师科研基金十一五阶段性成果集(湖北卷)[C];2010年
9 郑秀珍;;活动区材料的选择开发和利用[A];中国新时期思想理论宝库——第三届中国杰出管理者年会成果汇编[C];2007年
10 沈卉;;让数学活动区成为幼儿探索学习的好场所[A];国家教师科研基金“十一五”成果集(中国名校卷)(四)[C];2009年
相关重要报纸文章 前10条
1 红花岗区机关幼儿园 付灵红;幼儿园活动区创设初探[N];遵义日报;2011年
2 北京师范大学国际与比较教育研究所 霍力岩;幼儿园活动区教学的主要特点[N];中国教育报;2000年
3 镇江市丹徒区辛丰中心幼儿园 殷月华;幼儿数学活动区的创设与指导[N];江苏教育报;2009年
4 武清区第二幼儿园 乔海英;谈活动区规则的确立及落实[N];天津教育报;2013年
5 湖北省省直机关幼儿园 袁芒;创设智慧活动区[N];中国教育报;2002年
6 张建美;以区域活动挖掘潜能[N];济宁日报;2008年
7 四川省成都市金牛区机关第三幼儿园 赵葵;图书阅读与区域活动如何有效整合[N];中国教育报;2013年
8 潘丽新 辽宁省大连市西岗区教师幼儿园;如何科学安排幼儿园暑期活动[N];中国教育报;2014年
9 海南省琼海市教育幼儿园 黄霞;让美工活动区“说话”[N];中国教育资讯报;2002年
10 记者 路艳霞;春季书市持续12天设5活动区[N];北京日报;2009年
相关博士学位论文 前1条
1 刘丽娟;活动区日冕物质抛射的形成条件及产生规律[D];中国科学技术大学;2017年
相关硕士学位论文 前6条
1 金鑫;幼儿进餐活动组织现状个案调查[D];辽宁师范大学;2015年
2 高倩;幼儿园活动区材料投放的个案研究[D];鞍山师范学院;2016年
3 关虹;幼儿园活动区教育的策略研究[D];东北师范大学;2007年
4 章进;学习的回归—建构主义视域下的幼儿园活动区环境创设研究[D];西南大学;2012年
5 韩丹丹;中班幼儿泥工活动特点研究[D];南京师范大学;2011年
6 李会敏;幼儿园区域活动中教师指导行为的研究[D];广西师范大学;2006年
本文编号:2205394
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2205394.html