关于当前宇宙加速膨胀若干问题的物理研究
[Abstract]:At present, the observation of Ia supernova and the analysis of precise data from Wilkinson Microwave AnisotropyProbe (WMAP) show that our universe is in the stage of accelerating expansion. This contradicts the thermal Big Bang cosmological model based on ordinary baryon matter. According to the thermal Big Bang cosmological model, the universe should be decelerating and expanding. In order to explain the current accelerating expansion of the universe within the framework of the thermal Big Bang cosmological model, it is necessary to modify it. There are two main ways of correction, one is by introducing a new kind of dynamic component with negative pressure and uniform distribution in large scale structure, that is, the so-called dark energy. This is actually a correction to the right side of the Einstein gravitational field equation. The correctness of this correction is supported by Wilkinson Microwave AnisotropyProbe (WMAP). The probe shows that dark energy accounts for 73 percent of the total composition of cosmic matter. Therefore, there is reason to think that it is the cause of the current accelerating expansion of the universe. The second is to modify the left side of the Einstein gravitational field equation, that is, the geometry of space-time. This kind of correction is usually called the gravitational correction theory / (R) 's gravitation theory is one of the more competitive. In this paper, some physical problems in the accelerating expansion universe are studied from the above two approaches. Firstly, a new generalized Chaplygin gas is discussed as a unified model of dark energy and dark matter. We not only discuss the evolution trend of energy density with redshift z when there is and no interaction between dark energy and dark matter, but also give the evolution law of dark energy and energy transfer between dark matter and dark matter. At the same time, the today's value of the label transfer intensity constant is also given. In order to investigate the influence of the model on the formation of the structure, we give the evolution trajectory of the growth factor. The evolution trajectories of the growth factors in the generalized Chaplygin gas model and the CDM model are compared. Finally, the new generalized Chaplygin gas, the generalized Chaplygin gas and the CDM model are distinguished by using the Om diagnosis. Secondly, on the basis of Raychaudhuri equation, we derive four kinds of energy conditions in f (R) gravitation, that is, strong energy condition, zero energy condition, weak energy condition and principal energy condition, when there is any coupling between material and geometry. At the same time, we also derive the conditions for the attraction of f (R) gravity in the case of arbitrary coupling between matter and geometry and the criterion of Dolgov-Kawasaki instability. The energy condition and the Dolgov-Kawasaki instability criterion obtained in this paper are universal, which covers the case of f (R) gravitation when there is a non-minimum coupling between matter and geometry, and when there is no coupling, as well as the general relativistic theory. In order to understand the meaning of the four energy conditions and the Dolgov-Kawasaki instability criterion in the concrete model, we consider a class of f (R) model. Finally, we discuss how to accelerate the expansion of the current universe in f (R) gravity, where there is a non-minimum coupling between matter and geometry. Under the condition that the power law surge and the equation of state are less than -1 / 3, we give the relations between the parameters in the model, the conditions for accelerating the expansion of the universe and the material candidates in this model.
【学位授予单位】:辽宁师范大学
【学位级别】:硕士
【学位授予年份】:2010
【分类号】:P159.3
【共引文献】
相关期刊论文 前10条
1 张宁;爱因斯坦相对论的时空特性研究[J];北京联合大学学报(自然科学版);2005年01期
2 夏兆阳;相对论中引力场性质研究[J];北京联合大学学报(自然科学版);2005年01期
3 高兴茹,张宁;史瓦西度规奇性研究[J];北京联合大学学报(自然科学版);2005年02期
4 李文新;;对经典力学的反思:几个不同的基本假设[J];成都纺织高等专科学校学报;2009年01期
5 王晓松;;论席瓦西尔(Schwarzschild)外部解[J];成功(教育);2008年09期
6 肖学雷;两种引力观:地球引力效应及其内涵探析[J];重庆师范大学学报(自然科学版);2004年02期
7 韩万强;单勇;刘虎;;潮汐引力与时空曲率[J];沧州师范专科学校学报;2008年02期
8 吕嫣,桂元星,王安全;静态球对称时空中Dirac方程分离变量及退耦[J];大连理工大学学报;2004年03期
9 赫然;新梅;刘峰;;摈弃黑体概念的热平衡辐射理论[J];大连民族学院学报;2009年05期
10 宋文福,高丽丽,秦显荣;物理学中的组合常数方法[J];大庆石油学院学报;2004年06期
相关会议论文 前1条
1 丁剑;瞿锋;李谦;项清革;;卫星激光测距工程中的相对论效应探究[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
相关博士学位论文 前10条
1 林恺;可投影条件下的Horava-Lifshitz理论中宇宙学和黑洞的扰动[D];重庆大学;2011年
2 朱曙;黑洞熵、膜世界和熵引力若干问题的研究[D];上海大学;2011年
3 郭广海;弯曲时空中的标量场[D];大连理工大学;2005年
4 李成波;用特洛伊木马方法间接研究天体核反应~9Be(p,α)~6Li[D];中国原子能科学研究院;2005年
5 徐立昕;高维宇宙学模型与暗能量[D];大连理工大学;2006年
6 田贵花;类光测地线的变分和动态黑洞的熵[D];北京师范大学;2003年
7 刘文彪;用brick-wall方法计算黑洞熵及其相关问题的研究[D];北京师范大学;2000年
8 张成武;宇宙学观测与暗能量模型[D];大连理工大学;2007年
9 邵颖;暗能量的标量场模型[D];大连理工大学;2007年
10 常葆荣;宇宙学标度解与暗能量的Statefinder诊断[D];大连理工大学;2007年
相关硕士学位论文 前10条
1 王,
本文编号:2230540
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2230540.html