一类NS1-P黑洞的熵
发布时间:2018-11-13 06:43
【摘要】: 黑洞长久以来是理论物理学界感兴趣的问题,并在最近取得了一些天文学上的观察证据。黑洞的量子理论带来了很多佯谬,如何去解决这些佯谬是极重要的,问题的解答将加深我们对量子引力的理解。弦理论是量子引力的一个备选方案,其中是没有自由参数的,应该可以解决佯谬。如何应用弦理论来处理黑洞也是一个重要的课题。 我们要讨论的是一类NS1-P黑洞的熵的问题。Bekenstein熵为Sbek=A/4G。如果我们不打算破坏热力学第二定律,那么这个式子对黑洞就是成立的。这是我们的出发点。 ⅡB/ⅡA型超弦理论的低能有效作用量是ⅡB/ⅡA型超引力。在本文中我们要讨论的黑洞是超引力的解。我们先对超弦,超引力,T对偶,S对偶Kaluza-Klein约化做一些介绍。因为我们只对玻色解感兴趣,所以我们也只讨论玻色解。我们希望找出一类NS1-P黑洞的熵并给出其物理上的解释。 首先我们研究一下S对偶,通过S对偶我们可以给出NSl-P系统与D1-P系统作用量是等价的。NS1-P黑洞是NS1超引力的低能有效作用量的解。于是我们可以的知NS1-P黑洞和D1-P黑洞是等价的。而熵在S对偶下是不发生改变的。如果我们能解出NS1-P黑洞的熵那么我们也就知道了与之对偶的D1-P黑洞的熵。我们尝试通过约化IIB 10维NS1-P系统来得到5维黑洞。并将弦标架转为Einstein标架来求黑洞的熵。我们知道在弦理论中动量和荷存在着等价性,通过计算我们期望能得出NS1-P系统熵和荷之间的关系。
[Abstract]:Black holes have long been of interest to theoretical physics and have recently yielded some astronomical observational evidence. The quantum theory of black holes has brought many paradoxes, how to solve these paradoxes is extremely important, the solution of the problem will deepen our understanding of quantum gravity. String theory is an alternative to quantum gravity, in which there are no free parameters, which should solve the paradox. How to use string theory to deal with black holes is also an important subject. We are going to discuss the entropy of a kind of NS1-P black hole. Bekenstein entropy is Sbek=A/4G. If we do not intend to break the second law of thermodynamics, then this formula is true for black holes. This is our starting point. The low-energy effective action of type 鈪,
本文编号:2328305
[Abstract]:Black holes have long been of interest to theoretical physics and have recently yielded some astronomical observational evidence. The quantum theory of black holes has brought many paradoxes, how to solve these paradoxes is extremely important, the solution of the problem will deepen our understanding of quantum gravity. String theory is an alternative to quantum gravity, in which there are no free parameters, which should solve the paradox. How to use string theory to deal with black holes is also an important subject. We are going to discuss the entropy of a kind of NS1-P black hole. Bekenstein entropy is Sbek=A/4G. If we do not intend to break the second law of thermodynamics, then this formula is true for black holes. This is our starting point. The low-energy effective action of type 鈪,
本文编号:2328305
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2328305.html