利用太阳光压的大偏心率伴飞卫星轨道控制
发布时间:2018-11-23 10:07
【摘要】:提出了利用太阳帆进行大偏心率伴飞卫星轨道控制的方法.伴飞卫星围绕其惯量主轴做角速度恒定的自转,其惯量主轴在惯性系内指向保持不变.对伴飞卫星的控制分为轨道面的控制和轨道面内控制两部分.在控制过程中,优先考虑轨道面内的控制,在轨道面内控制不能进行(或者因为几何原因不能进行轨道面内控制)时,进行轨道面的控制.通过滑膜控制方法(Sliding Mode Control)计算轨道面内控制需要的控制力的方向和大小.得到需求的控制力要求后,推算出在控制过程中太阳帆相对于伴飞卫星主体的角度解析表达式.通过控制太阳帆的方向得到所需的不同的控制力.整个控制过程只针对伴飞卫星,主星处于自然飞行状态.最后对于这种控制方法进行数值验证.在无摄运动状态下通过控制系统进行伴飞轨道的轨道调整和误差消除,在考虑4阶非球形引力和第三体引力摄动情况下进行伴飞轨道的轨道维持.数值结果表明通过这种控制方法伴飞轨道能够保持轨道误差小于5 m.
[Abstract]:A method for orbit control of satellite with large eccentricity by using solar sail is presented. The satellite has a constant rotation of angular velocity around its inertial spindle, and the direction of the inertial spindle remains unchanged. The control of the satellite is divided into two parts: the control of orbit surface and the control of orbit plane. In the control process, priority is given to the in-plane control of the track, and when the in-plane control of the track cannot be carried out (or can not be controlled in the track for geometric reasons), the control of the track surface is carried out. The direction and magnitude of the control force needed for the in-plane control of the track are calculated by the synovial control method (Sliding Mode Control). After the required control force is obtained, the analytical expression of the angle of the solar sail relative to the satellite body during the control process is deduced. Different control forces are obtained by controlling the direction of the solar sail. The whole control process is only for the companion satellite, and the host satellite is in a natural flight state. Finally, the numerical verification of the control method is carried out. The orbit adjustment and error elimination of the tracking orbit are carried out by the control system in the state of non-perturbation motion, and the orbit maintenance of the tracking orbit is carried out considering the perturbation of the fourth order non-spherical gravity and the third body gravity. The numerical results show that the trajectory error can be kept less than 5 m by this control method.
【作者单位】: 中国科学院紫金山天文台;中国科学院空间目标与碎片观测重点实验室;中国科学院大学;
【基金】:国家自然科学基金项目(11125315,11173056)资助
【分类号】:P173.1
本文编号:2351203
[Abstract]:A method for orbit control of satellite with large eccentricity by using solar sail is presented. The satellite has a constant rotation of angular velocity around its inertial spindle, and the direction of the inertial spindle remains unchanged. The control of the satellite is divided into two parts: the control of orbit surface and the control of orbit plane. In the control process, priority is given to the in-plane control of the track, and when the in-plane control of the track cannot be carried out (or can not be controlled in the track for geometric reasons), the control of the track surface is carried out. The direction and magnitude of the control force needed for the in-plane control of the track are calculated by the synovial control method (Sliding Mode Control). After the required control force is obtained, the analytical expression of the angle of the solar sail relative to the satellite body during the control process is deduced. Different control forces are obtained by controlling the direction of the solar sail. The whole control process is only for the companion satellite, and the host satellite is in a natural flight state. Finally, the numerical verification of the control method is carried out. The orbit adjustment and error elimination of the tracking orbit are carried out by the control system in the state of non-perturbation motion, and the orbit maintenance of the tracking orbit is carried out considering the perturbation of the fourth order non-spherical gravity and the third body gravity. The numerical results show that the trajectory error can be kept less than 5 m by this control method.
【作者单位】: 中国科学院紫金山天文台;中国科学院空间目标与碎片观测重点实验室;中国科学院大学;
【基金】:国家自然科学基金项目(11125315,11173056)资助
【分类号】:P173.1
【参考文献】
相关期刊论文 前1条
1 胡寿村;赵玉晖;季江徽;侯锡云;;摄动分析法在小推力轨道优化中的应用[J];天文学报;2015年02期
【二级参考文献】
相关期刊论文 前7条
1 李俊峰;蒋方华;;连续小推力航天器的深空探测轨道优化方法综述[J];力学与实践;2011年03期
2 蒋方华;陈杨;刘跃聪;宝音贺西;李俊峰;;2010年国际深空探测轨道优化竞赛的清华大学解法[J];力学与实践;2011年03期
3 沈红新;罗亚中;李海阳;;第四届全国空间轨道设计竞赛冠军团队解法[J];力学与实践;2013年01期
4 路毅;李济生;李恒年;车征;;基于星历匹配法的载人小行星探测轨迹优化问题求解[J];力学与实践;2014年02期
5 彭超;高扬;;近圆参考轨道卫星编队洛仑兹力控制[J];力学学报;2012年05期
6 林厚源;赵长印;;无需初值猜测的间接法小推力轨道设计[J];天文学报;2012年03期
7 季江徽;;开展小行星彗星深空探测的科学意义和启示[J];国防科技工业;2011年04期
,本文编号:2351203
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2351203.html