分段密度分布函数与太阳解析解模型的研究
[Abstract]:Due to the slow evolution rate of the Sun at the stage of the principal ordered star, it can be assumed that it is a spherically symmetric hydrostatic equilibrium system. The physical quantity of the sun is only a function of the radial distance independent of the angular variables. On this basis, four differential equations describing the inner structure of the sun, namely, mass distribution equation, hydrostatic equilibrium equation, energy transport equation and energy equilibrium equation, can be introduced. The main task of studying the solar model is to solve the structural equations of the sun under certain boundary conditions. With the development of computer technology, numerical solutions of structural equations can be obtained effectively, but there are still some unsolved riddles about the sun that cannot be answered by numerical solutions. In order to make up for the shortage of numerical solution models, many analytical models of the sun have been proposed, and many meaningful results have been obtained. However, the outstanding problem of the existing analytical solution model is that the adjustable parameters are too few, the model is not flexible enough, and the result of calculation is too different from that of the numerical solution model. In addition, some analytical solution models (such as Stein model) assume the form of density distribution function directly, but can not explain why the density distribution function is chosen in this form. In this paper, a new solar analytical solution model is proposed. According to the different physical properties, the solar interior is divided into two different regions. The inner part is a nuclear reaction zone, and the outer one is a non-nuclear reaction region. Firstly, considering the requirements of physical laws, the characteristics of density distribution function are assumed, and the parameter 位 is introduced to indicate the relative difference between the density of the solar center and the density at the regional interface. The ratio of the radius of the nuclear reaction zone to the radius of the sun is expressed by introducing the parameter 伪. The density distribution function of the nuclear reaction region and the non-nuclear reaction region is expanded according to Taylor series, the first few terms of the expansion are taken, and the coefficients of the Taylor expansion can be determined according to the characteristics that the density distribution function must satisfy. Thus the concrete expression of density distribution function is naturally introduced. The essence of the new model is to simulate the density distribution function of the nuclear reaction region by quadratic function and the density distribution function of the non-nuclear reaction region by the first order function. If the density distribution function and the equation of state of the sun are known, the mass distribution equation and the hydrostatic equilibrium equation can be solved without considering the energy transport equation and the energy balance equation. Generally, the sun is regarded as an ideal gas, and its equation of state satisfies the equation of state of an ideal gas. The density distribution function of the sun is substituted into the mass distribution equation, the hydrostatic equilibrium equation and the ideal gas state equation in turn. Under certain boundary conditions, the analytical expressions of the internal pressure and temperature of the sun can be obtained. If the parameters 伪 and 位 are known, the specific values of the central density, central pressure and central temperature of the sun can be calculated. Finally, the influence of adjustable parameters on the thermodynamic parameters at the center of the sun and the advantages of the new model are discussed. Like other analytical solution models, the advantage of the new model is that the analytical expression of the thermodynamic parameters of the solar interior can be obtained without detailed investigation of the specific details of the nuclear reaction in the solar interior. By comparison, it is found that the solar analytical solution model of the piecewise density distribution function method is much better than the existing analytic solution model. The calculated solar center density, central pressure and center temperature can agree with the results of the analytical solution model. The calculation of solar luminosity can be greatly simplified and the analytical expression of energy in nuclear reaction region can also be given. The new model has more flexibility because of the introduction of two adjustable parameters, which is of great significance for us to study the physical processes inside the sun.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:P182
【相似文献】
相关期刊论文 前10条
1 朱希睿;孟续军;;改进的含温有界原子模型对金的电子物态方程的计算[J];物理学报;2011年09期
2 晋守博;陈攀峰;;耗散稀薄气体的动力学模型的L~1渐近稳定性[J];应用数学;2011年03期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前9条
1 张俞;洪广文;冯卫兵;;多模边缘波能量分布研究[A];第十五届中国海洋(岸)工程学术讨论会论文集(中)[C];2011年
2 陆希成;李爽;王建国;王光强;韩峰;;微波混沌腔内激励电磁场空间分布的统计分析[A];2011年全国微波毫米波会议论文集(下册)[C];2011年
3 史灵卫;刘和光;许可;杨双宝;徐曦煜;;延时多普勒雷达高度计在不同海况时的回波仿真[A];第十七届中国遥感大会摘要集[C];2010年
4 黄玮琼;吴宣;;地震活动性参数对城镇危险性估计的影响[A];中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集[C];2002年
5 黄玮琼;吴宣;;地震统计时段对大城市危险性估计的影响[A];中国地震学会第九次学术大会论文摘要集——纪念李善邦先生百年诞辰[C];2002年
6 尤红建;;基于Edgeworth逼近的SAR变化检测方法研究[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
7 陆志;连之伟;;地源热泵有限长线源模型简化负荷计算方法的修正[A];上海市制冷学会2007年学术年会论文集[C];2007年
8 陈剑平;王清;肖树芳;黄亦群;;K-S检验假设分布有效性在岩体工程中的应用[A];第五届全国工程地质大会文集[C];1996年
9 杨松年;王鑫;赵军;唐忠华;;城市功能型目标伪装与防护评价分析中的综合效能[A];江苏省系统工程学会第十一届学术年会论文集[C];2009年
相关博士学位论文 前7条
1 史启鸿;非对称排它过程中的复杂相变研究[D];中国科学技术大学;2012年
2 付小雪;露天矿卡车实时调度决策系统空间运算研究与应用[D];中国矿业大学(北京);2012年
3 吕伟锋;工艺波动对纳米尺度MOS集成电路性能影响模型与相关方法研究[D];浙江大学;2012年
4 田红亮;机械结构固定结合部动力学建模[D];华中科技大学;2011年
5 张正江;过程系统的数据校正与参数估计[D];浙江大学;2010年
6 王蕾;聚电解质在均匀带电平面上吸附的密度泛函研究[D];中国科学技术大学;2011年
7 田红亮;机械结构固定结合部虚拟材料的动力学建模[D];华中科技大学;2011年
相关硕士学位论文 前10条
1 郝永亮;分段密度分布函数与太阳解析解模型的研究[D];吉林大学;2012年
2 谢健健;海洋表面波越过非理想海底地形时的解析模拟[D];广西民族大学;2011年
3 华海玉;基于模型实体规范的水环境解析解模型库管理研究与应用[D];重庆大学;2010年
4 向远涛;有效中心对称模型势的统计热力学与计算机模拟研究[D];中南大学;2011年
5 李娇;时域扩散荧光层析技术基本原理与系统研究[D];天津大学;2010年
6 刘昊;基于非能动系统功能可靠性的火箭发动机预冷系统设计参数优化[D];上海交通大学;2011年
7 朱红伟;脉冲耦合神经网络在商标图像检索中的应用研究[D];云南大学;2012年
8 董华山;重力作用下矿井突水数值模拟及其并行算法设计[D];西安建筑科技大学;2011年
9 马国宇;材料力学设计许用值统计方法研究及软件开发[D];东北大学;2010年
10 张李超;微尺度流体流动和混合的LBM模拟[D];清华大学;2010年
本文编号:2357652
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2357652.html