当前位置:主页 > 科技论文 > 网络通信论文 >

物联网与工业企业决策支持系统融合研究

发布时间:2018-03-25 10:07

  本文选题:物联网 切入点:决策支持系统 出处:《燕山大学》2014年硕士论文


【摘要】:工业化与信息化融合的背景下,我国工业企业在发展壮大过程中开始更多地借助科技力量。粗放型的经济发展模式以及传统的工业生产工艺对人力资源、自然能源都造成了很大的浪费,对此现状,本文提出了以工业企业为背景的物联网与决策支持融合系统的设计方案,将物联网技术应用到工业企业中,并结合企业决策支持系统进行融合架构,实现工业生产管理过程的全面感知和智能决策。 本文在概述了融合系统的研究背景、课题意义和相关理论基础上,,面向工业企业的实际需求,以构建物联网与决策支持融合系统为目标,围绕融合系统整体架构和层次设计问题展开研究。首先,对融合系统进行整体构建,建立底层感知层和上层决策层紧密衔接的信息化系统,感知层具备全面感知监测功能,决策层为企业的生产活动提供决策支持;其次,选择复杂网络理论作为研究切入点,利用小世界网络模型对融合系统感知层进行网络拓扑结构优化,以及应用网络化数据挖掘算法实现对决策数据的挖掘处理,发现其中蕴含的结构性知识和动态变化规律;最后,将本系统的研究应用于实际企业生产过程,获取某轮毂生产企业的铸造工艺过程实时数据,对影响成品质量的因素进行分析,运用决策支持子系统的数据挖掘方法获得可视化决策知识,以实现企业实时智能化管理。
[Abstract]:Under the background of the integration of industrialization and information technology, Chinese industrial enterprises begin to rely more on scientific and technological power, extensive economic development model and traditional industrial production technology to human resources in the process of development and expansion. The natural energy has caused a great waste. In view of the present situation, this paper puts forward the design scheme of the integration system of Internet of things and decision support based on the industrial enterprises, and applies the technology of the Internet of things to the industrial enterprises. Combined with the enterprise decision support system (DSS), it can realize the overall perception and intelligent decision of the industrial production management process. Based on an overview of the research background, significance and related theories of fusion system, this paper aims at building a fusion system of Internet of things and decision support, which is oriented to the actual needs of industrial enterprises. First of all, we construct the fusion system as a whole, and establish the information system which is closely connected between the bottom perception layer and the upper decision-making layer. The perception layer has the function of overall perception and monitoring. Decision layer provides decision support for enterprise production activities. Secondly, the complex network theory is selected as the starting point to optimize the network topology structure of the fusion system perception layer by using the small-world network model. And using the network data mining algorithm to realize the mining of decision data, and find the structural knowledge and dynamic change law. Finally, the research of this system is applied to the actual enterprise production process. The real-time data of casting process in a hub manufacturing enterprise are obtained, the factors affecting the quality of finished product are analyzed, and the visual decision knowledge is obtained by using the data mining method of decision support subsystem, so as to realize the real-time intelligent management of the enterprise.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP311.13;TP391.44;TN929.5

【参考文献】

相关期刊论文 前10条

1 孙其博;刘杰;黎

本文编号:1662647


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/1662647.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6888e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com