SAR数据中单个散射部件检测方法研究
发布时间:2018-03-26 17:59
本文选题:SAR 切入点:三维部件级电磁散射模型 出处:《国防科学技术大学》2014年硕士论文
【摘要】:合成孔径雷达(SAR)具有全天时全天候的巨大优势,已成为现代战场侦察的重要手段。尽管SAR自动目标识别(ATR)技术已经取得了较大的进步,其仍然无法满足复杂多变的战场需求。如何快速准确地识别SAR目标并对其可能发生的局部变化做出判断对于实战中的战场情报获取具有十分重要的价值。因此,实现更高精度、更深层次的SAR自动目标识别意义重大。基于模型的SAR ATR由于适应扩展操作条件的能力强而成为SAR ATR的研究热点。构建目标部件级别三维电磁散射模型对于实现目标部件级精细识别具有重要意义。目标部件级三维电磁散射模型描述了目标整体以及组成其的各个散射部件在某一频段、姿态下的电磁散射特性,这使得检测目标的单个散射部件成为可能。本文面向部件级别的SAR目标识别,着力研究了SAR数据中单个散射部件的检测方法,主要研究工作如下:一、介绍了目标部件级三维电磁散射模型的构建过程以及其参数化表述形式。分析了其具有的特性并据此设计了单个散射部件检测的实施框架。该框架描述了如何从目标的部件级三维电磁散射模型出发预测单个散射部件的二维图像或特征,进而在实测SAR数据中检测单个散射部件。二、提出了基于匹配滤波的单个散射部件检测方法。匹配滤波是信号检测的经典算法。本文利用目标部件级三维电磁散射模型预测单个散射部件的图像并以此构建匹配滤波器。通过在模型参数域的滑动实现了三维参数域的匹配滤波器滑动从而提高了匹配滤波器的检测精度。同时,基于CLEAN思想在逐个检测散射部件的过程中不断剔除散射部件之间的互扰。最后使用该方法对简易坦克目标的电磁计算数据、暗室测量数据以及MSTAR“干扰”数据进行了散射部件检测实验,实验结果表明,该算法能够较好得检测出实测数据中存在的散射部件。三、提出了基于特征匹配的单个散射部件检测方法。该方法首先分析了单个散射部件在图像域特性据此构造散射部件的特征,紧接着设计了合适的相似度度量准则实现特征匹配完成单个散射部件的检测。最后使用该方法对简易坦克目标的电磁计算数据、暗室测量数据以及MSTAR“干扰”数据进行了实验,实验结果表明,该算法能够较好得检测出实测数据中存在的散射部件。
[Abstract]:Synthetic Aperture Radar (SAR) has the advantage of all-weather and all-day, and has become an important means of modern battlefield reconnaissance. It is still unable to meet the complex and changeable battlefield requirements. How to identify SAR targets quickly and accurately and judge the possible local changes are of great value to the acquisition of battlefield information in actual combat. The deeper SAR automatic target recognition is of great significance. The model-based SAR ATR has become the research hotspot of SAR ATR due to its strong ability to adapt to extended operating conditions. The construction of target component-level 3D electromagnetic scattering model is of great importance to the realization of the target. The target component level 3D electromagnetic scattering model describes the whole target and the scattering components of the target in a certain frequency band. The electromagnetic scattering characteristics under attitude make it possible to detect a single scattering component of a target. This paper focuses on the detection method of single scattering component in SAR data for component level SAR target recognition. The main research work is as follows: 1. In this paper, the process of constructing 3D electromagnetic scattering model at target component level and its parameterized expression are introduced. The characteristics of the model are analyzed and an implementation framework for detecting a single scattering component is designed. The framework describes how to detect a single scattering component from. The component level 3D electromagnetic scattering model of a target is used to predict the two-dimensional images or features of a single scattering component. Then a single scattering component is detected in the measured SAR data. This paper presents a single scattering component detection method based on matched filter. Matched filter is a classical algorithm for signal detection. In this paper, the target component level 3D electromagnetic scattering model is used to predict the image of a single scattering component and to construct a piece of image. Matching filter. By sliding in the model parameter domain, the matched filter sliding in 3D parameter domain is realized, thus improving the detection accuracy of matched filter. At the same time, In the process of detecting scattering components one by one, the mutual interference between scattering components is eliminated continuously based on the idea of CLEAN. Finally, the electromagnetic calculation data of simple tank targets are calculated by using this method. The experimental results show that the proposed algorithm can detect the scattering components in the measured data. Third, the experimental results show that the proposed algorithm can detect the scattering components in the measured data. In this paper, a method of detecting a single scattering component based on feature matching is proposed. Firstly, the characteristics of a single scattering component in image domain are analyzed. Then a suitable similarity measure criterion is designed to realize the feature matching to complete the detection of a single scattering component. Finally, the electromagnetic calculation data of the simple tank target, the darkroom measurement data and the MSTAR "interference" data are tested. The experimental results show that the proposed algorithm can detect the scattering components in the measured data.
【学位授予单位】:国防科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【参考文献】
相关期刊论文 前4条
1 陈耀东;李仁发;;一种面向目标检测的部件学习方法[J];计算机研究与发展;2013年09期
2 张正;王宏琦;孙显;巩大亮;胡岩峰;;基于部件的自动目标检测方法研究[J];电子与信息学报;2010年05期
3 高贵,计科峰,匡纲要,李德仁;基于Radon变换的SAR图像目标统计不变特征提取研究[J];遥感技术与应用;2004年03期
4 张翠,郦苏丹,邹涛,王正志;一种应用峰值特征匹配的SAR图象自动目标识别方法[J];中国图象图形学报;2002年07期
,本文编号:1668942
本文链接:https://www.wllwen.com/kejilunwen/wltx/1668942.html