高精度空间目标探测雷达天线座结构设计与分析
发布时间:2018-03-27 05:36
本文选题:雷达 切入点:天线座 出处:《哈尔滨工业大学》2014年硕士论文
【摘要】:天线座轴系精度包括方位轴晃动误差和俯仰轴与方位轴垂直度误差[1],主要由轴承跳动、结构件制造误差和结构件变形等因素引起;同时,高精度轴系误差的检测技术也是保证高精度天线座产品实现的必要技术手段。开展天线座轴系精度分析,研究减小轴系误差的设计结构,研究提高轴系误差检测精度的方法,能够对大型高精度雷达天线座的结构设计提供支持和借鉴。本文从三个方面开展了这方面的分析研究: 首先介绍了天线座总体结构的设计要点,介绍了天线座轴系结构的组成和工作原理,分析了引起轴系误差的原因以及常见轴系结构的不足,提出了减小轴系误差的轴系结构改进设计,进行了分析计算。分析了常见轴系误差检测方法的不足,通过谐波分析方法处理检测数据,分离出各类轴系误差,以提高检测的精度。通过对实测数据的分析,验证了改进后轴系精度满足技术指标要求。 其次介绍了结构拓扑优化设计的基本方法和原理,分析了传统结构优化设计流程的不足,,基于拓扑优化设计技术对传统优化设计流程进行了改进,对天线座典型结构件进行了拓扑优化计算,得到了优化后的结构件形状和材料分布,验证了采用新的拓扑优化设计流程开展天线座结构概念设计和方案设计是可行的。 最后介绍了有限元法的基本概念和模态分析的基本理论,为了使仿真计算更加准确,利用ANSYS Workbench Mechanical建立了可同时用于静力分析和模态分析的完整的天线座有限元模型,采用铰链单元模拟轴承,采用扭转弹簧单元模拟减速器的扭转刚度,采用轴向弹簧单元模拟齿轮副的啮合刚度。这种模型既考虑了结构件本身的刚度,又考虑了传动系统的刚度。基于这个模型对天线座结构进行了模态和静力学计算,得到了各种工况下天线座结构的强度、刚度和谐振频率,分析了其对于天线座结构精度的影响。
[Abstract]:The accuracy of antenna base shafting system includes azimuth axis sloshing error and pitch axis and azimuth axis perpendicularity error [1], which is mainly caused by bearing runout, structural component manufacturing error and structural deformation, etc. The detection technology of the high precision shafting error is also the necessary technical means to ensure the realization of the high precision antenna pedestal. The precision analysis of the antenna base shafting system is carried out, the design structure of reducing the shafting error is studied, and the method of improving the measuring accuracy of the shafting error is studied. It can provide support and reference for the structural design of large high-precision radar antenna pedestal. In this paper, three aspects of this analysis and research are carried out:. This paper first introduces the main points of the design of the overall structure of the antenna pedestal, introduces the composition and working principle of the shafting structure of the antenna pedestal, analyzes the causes of the shafting errors and the shortcomings of the common shafting structures. The improved design of shafting structure to reduce the error of shafting is put forward, and the analysis and calculation are carried out. The shortcomings of common methods for measuring shafting errors are analyzed. The detection data are processed by harmonic analysis method, and all kinds of shafting errors are separated out. Through the analysis of the measured data, it is verified that the improved shafting precision meets the technical requirements. Secondly, it introduces the basic methods and principles of structural topology optimization design, analyzes the shortcomings of traditional structural optimization design flow, and improves the traditional optimization design process based on topology optimization design technology. The topology optimization calculation of typical antenna pedestal is carried out, and the shape and material distribution of the optimized structure are obtained. It is proved that it is feasible to carry out conceptual design and scheme design of antenna pedestal structure by using the new topology optimization design flow. Finally, the basic concept of finite element method and the basic theory of modal analysis are introduced. In order to make the simulation calculation more accurate, a complete finite element model of antenna base is established by using ANSYS Workbench Mechanical, which can be used for both static and modal analysis. The bearing is simulated by hinge element, torsional spring element is used to simulate torsional stiffness of reducer, and axial spring element is used to simulate meshing stiffness of gear pair. The stiffness of the transmission system is also considered. Based on this model, the modal and static calculation of the antenna pedestal structure is carried out, and the strength, stiffness and resonant frequency of the antenna pedestal structure under various working conditions are obtained. The effect on the precision of antenna pedestal structure is analyzed.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.2
【参考文献】
相关期刊论文 前10条
1 任雪梅,李岩,龚至豪;基于规则补偿的滞环系统自适应非线性PID控制(英文)[J];Journal of Beijing Institute of Technology(English Edition);2000年02期
2 袁海平;雷达天线座V型支臂的刚度设计[J];电子机械工程;2000年02期
3 袁海平;雷达机械结构现代设计方法初探[J];电子机械工程;2000年03期
4 肖万选,王喜坤;舰载雷达天线转台基座的结构分析[J];电子机械工程;2000年05期
5 吴迤;测量雷达天线座轴系精度分析[J];电子机械工程;2001年02期
6 肖万选;舰载雷达天线转台系统中关键受力部件的结构型式[J];电子机械工程;2003年05期
7 赵泓滨;大型雷达天线结构中的传动链[J];电子机械工程;2003年05期
8 肖万选;申余才;;雷达天线转台负载力矩的确定[J];电子机械工程;2007年03期
9 袁海平;;某特种体制雷达天线座驱动系统设计[J];电子机械工程;2009年01期
10 庞毅;;深空大天线结构设计关键技术[J];电子机械工程;2011年03期
本文编号:1670254
本文链接:https://www.wllwen.com/kejilunwen/wltx/1670254.html