弹体自旋状态下的卫星导航技术研究
发布时间:2018-03-29 03:26
本文选题:全球导航卫星系统 切入点:弹体自旋 出处:《电子科技大学》2014年硕士论文
【摘要】:随着各国全球导航卫星系统(GNSS)的不断建设与发展,卫星导航所能提供的性能越发优异。各类制导弹药开始普遍部署卫星导航接收机作为其主要制导手段。导弹在其整个飞行过程中,常常伴随着弹体的自旋。弹体自旋状态对现有GNSS接收机技术所带来的挑战,是一个很吸引人的研究领域。本课题系统地研究了弹体自旋状态特性对传统卫星导航同步技术的影响,并针对性地改进了自旋弹载接收机的卫星信号跟踪环路设计。论文主要研究内容分为五部分:1.研究了卫星制导弹药的弹体自旋状态特性以及现有弹载GNSS接收机的设计模式。分析表明弹体自旋对其卫星制导性能造成影响的主要原因为弹载天线相位中心与自旋转轴几何中心的偏差。2.建立了弹载GNSS接收天线坐标系,系统地研究了弹体自旋状态下接收的导航卫星信号所受影响。推导了弹体自旋状态下接收卫星信号的多普勒频移,载波相位和本地中频信号变化规律,建立了随弹体旋转的GNSS接收机中频卫星信号模型。3.研究了传统GNSS接收机卫星信号同步技术在弹体自旋场景下的适应性。通过仿真分别给出了传统接收机信号同步算法对卫星信号进行捕获或跟踪时,发生失败的弹体临界自旋转速。仿真结果表明传统跟踪环路无法在弹体高自旋转速下进行信号跟踪。4.提出了一种新的载波跟踪环路——旋转跟踪环路,以应对弹体自旋下接收机卫星信号跟踪所面临的挑战。完成了该环路旋转鉴别器,旋转滤波器和旋转NCO(数控振荡器)的详细设计。该环路大量复用传统载波跟踪环路结构,无需依赖其他传感器硬件,成功实现了弹体自旋转速的准确测量。利用转速信息辅助,新环路能够在传统环路无法适应的弹体高自旋转速下成功进行信号跟踪,覆盖整个0~20r/s的弹体自旋转速和0~5r/s2的弹体自旋加速度范围。同时,与传统环路相比,旋转跟踪环路的载波相位估计误差更小,具备更优异的性能。5.设计开发了一套基于Matlab GUI的弹体自旋下的卫星导航性能仿真软件,为后续自旋弹载接收机卫星导航技术的设计与性能分析提供可视化软件工具。
[Abstract]:With the continuous construction and development of GNSS, The performance that satellite navigation can provide is more and more excellent. All kinds of guided ammunition begin to widely deploy satellite navigation receiver as its main guidance means. Often accompanied by the spin of the projectile. The spin state of the projectile poses a challenge to the existing GNSS receiver technology. This paper systematically studies the influence of the spin state characteristics of the projectile on the traditional satellite navigation synchronization technology. The design of the satellite signal tracking loop of the Spin-borne receiver is improved. The main contents of this paper are divided into five parts: 1. The spin state characteristics of the projectile and the existing GNSS receiver are studied. Design pattern. The analysis shows that the main reason for the influence of projectile spin on the guidance performance of the satellite is the deviation between the phase center of the projectile antenna and the geometric center of the spin axis. The coordinate system of the receiving antenna for the missile borne GNSS is established. The influence of satellite signals received in the spin state of the projectile is systematically studied. The Doppler frequency shift, carrier phase and local if signal variation of the received satellite signal in the spin state of the missile body are derived, and the variation of the Doppler frequency shift, the carrier phase and the local intermediate frequency signal are derived. The if satellite signal model of GNSS receiver rotated with the projectile is established. The adaptability of the traditional GNSS receiver satellite signal synchronization technology to the spin scene of the projectile is studied. The signal synchronization of the traditional receiver is given by simulation. Algorithm to capture or track satellite signals, The simulation results show that the traditional tracking loop can not track the signal at the high spin speed of the projectile. 4. A new carrier tracking loop-rotation tracking loop is proposed. The detailed design of the loop rotary discriminator, rotary filter and rotary NCO (numerical controlled oscillator) is completed in order to meet the challenge of satellite signal tracking in the spin-down receiver of the projectile. The loop is widely multiplexed with the traditional carrier tracking loop structure. Without relying on the hardware of other sensors, the accurate measurement of the spin speed of the projectile is successfully realized. With the help of the rotational speed information, the new loop can successfully track the signal at the high spin speed of the projectile which the traditional loop can not adapt to. The spin rotation speed of the whole 0~20r/s and the spin acceleration range of the 0~5r/s2 projectile are covered. At the same time, the carrier phase estimation error of the rotation tracking loop is smaller than that of the traditional loop. 5. A simulation software of satellite navigation performance based on Matlab GUI is designed and developed, which provides a visual software tool for the design and performance analysis of satellite navigation technology of spin-borne receiver.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN967.1;TJ765
【参考文献】
相关期刊论文 前3条
1 申强;王猛;李东光;;旋转条件GPS接收信号频率和相位变化分析[J];北京理工大学学报;2009年01期
2 陈金平,周建华,赵薇薇;卫星导航系统性能要求的概念分析[J];无线电工程;2005年01期
3 王忠,黄顺吉;天线相位中心移动对GPS观测量的影响[J];系统工程与电子技术;1999年03期
相关博士学位论文 前2条
1 张晶泊;GNSS软件接收机高动态载波跟踪环路关键技术研究[D];大连海事大学;2012年
2 左启耀;高动态GPS信号跟踪算法研究[D];中国科学院研究生院(空间科学与应用研究中心);2008年
相关硕士学位论文 前1条
1 杨明轩;高动态GPS信号的快速捕获与跟踪方法研究[D];电子科技大学;2008年
,本文编号:1679354
本文链接:https://www.wllwen.com/kejilunwen/wltx/1679354.html