平面波激励下传输线响应分析与计算
发布时间:2018-03-29 20:02
本文选题:平面极化波 切入点:空间矢量分解 出处:《国防科学技术大学》2014年硕士论文
【摘要】:由于电磁环境的日益恶化,外场激励下传输线系统的响应分析与计算已经成为计算电磁学和电磁兼容领域的重要课题。本文主要针对两类传输线结构——双导体传输线和带多条导电脊的PCB板——进行研究,分析了平面极化波的场线耦合途径,通过等效模型和改进后的BLT方程,进行响应的分析与计算。通过数值仿真实验进一步验证了本文方法的有效性,并得出平面波激励响应的量级和传播特性,这对电磁防护工作有现实的指导意义。本文通过几个步骤对外场激励响应进行了研究——空间矢量分解、分布参数提取、传输线方程推导、方程求解的数值技巧和BLT模型的进一步改进。1、给出了双导线受平面波激励下的空间矢量分解,借助方位角、极化角等概念确定场分量的解析表达式。对于结构复杂的PCB板,本文把一般的反射系数推广为广义反射系数,得到等效场的矢量分解形式。2、分布参数的提取是响应求解的基础,本文给出了一般类型的传输线结构的分布参数解析表达式,并针对一类非平行的传输线,基于电路参数的物理含义,通过积分过程来确定相应场量,得到传输线分布参数的数值计算公式。3、研究了平面极化波激励下PCB板的响应问题。本文把PCB板等效为多导体传输线结构,给出相应分布参数的数值计算公式,在对外场进行矢量分解后,通过应用经修正的BLT模型和多导体传输线方程求解响应结果。4、对本文建立的模型方法进行数值仿真。仿真结果表明本文方法在时域、频域上都有较好的拟合,进一步验证了模型的有效性。得出以下结论:1伏特的激励电压在PCB的导电脊上产生的响应电压的量级为10-3V;时域、频域形式的感应电压都存在零点,这些特殊的频点或时间点都与传输线结构有关;在含两条导电脊的PCB板上,感应电压值要大于串扰电压值。
[Abstract]:Due to the worsening of the electromagnetic environment, The response analysis and calculation of transmission line system under external field excitation has become an important subject in the field of computational electromagnetics and electromagnetic compatibility. In this paper, two kinds of transmission line structures-double conductor transmission lines and PCB plates with multiple conducting ridges are studied. The field-line coupling method of plane polarization wave is analyzed, and the response is analyzed and calculated by the equivalent model and the improved BLT equation. The effectiveness of the proposed method is further verified by numerical simulation. The magnitude and propagation characteristics of the plane wave excitation response are obtained, which is of practical significance for electromagnetic protection. In this paper, the space vector decomposition and distribution parameter extraction are studied through several steps of external field excitation response. The derivation of transmission line equation, the numerical technique of solving the equation and the further improvement of BLT model. The space vector decomposition of double conductor excited by plane wave is given, and the azimuth angle is used. For the PCB plate with complex structure, the general reflection coefficient is extended to the generalized reflection coefficient, and the vector decomposition form of equivalent field is obtained. The extraction of the distribution parameter is the basis of the response solution. In this paper, an analytical expression of the distribution parameters of a general type of transmission line structure is given. For a class of non-parallel transmission lines, the corresponding field quantities are determined by the integral process based on the physical meaning of the circuit parameters. The numerical calculation formula of transmission line distribution parameters is obtained. The response problem of PCB plate under plane polarization wave excitation is studied. In this paper, the PCB plate is equivalent to a multi-conductor transmission line structure, and the numerical calculation formula of the corresponding distribution parameters is given. After vector decomposition of the external field, the modified BLT model and the multi-conductor transmission line equation are used to solve the response result .4. the simulation results show that the proposed method is in time domain. The validity of the model is further verified by good fitting in frequency domain. The following conclusions are drawn: the order of response voltage generated by the excitation voltage of 1 volt on the conducting ridge of PCB is 10 ~ (-3) V, and the inductive voltage in time domain and frequency domain is zero. These special frequency points or time points are related to the transmission line structure. On the PCB plate with two conducting ridges, the inductive voltage is larger than the crosstalk voltage.
【学位授予单位】:国防科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN811;TN41
【参考文献】
相关期刊论文 前8条
1 彭强;周东方;侯德亭;胡涛;王利萍;韩晨;;基于BLT方程的微带线电磁耦合终端响应[J];强激光与粒子束;2013年05期
2 彭强;周东方;王利萍;刘起坤;饶育萍;韩晨;;微带线的电磁耦合特性分析及实验验证[J];信息工程大学学报;2013年01期
3 覃宇建;周东明;何建国;;BLT方程在任意布局传输线串扰分析中的应用[J];国防科技大学学报;2009年02期
4 安霆;刘尚合;;基于BLT方程的电磁干扰建模[J];高电压技术;2007年12期
5 倪谷炎;罗建书;李传胪;;Taylor与Agrawal模型的解析求解与模型比较[J];强激光与粒子束;2007年09期
6 范颖鹏,杜正伟,龚克,张肃;微带线电路板端口对入射电磁波的电压响应[J];强激光与粒子束;2005年03期
7 林竞羽,周东方,毛天鹏,胡涛;电磁拓扑分析中的BLT方程及其应用[J];信息工程大学学报;2004年02期
8 张希,刘宗行,孙韬;传输线方程的一种数值解法[J];重庆大学学报(自然科学版);2004年02期
相关博士学位论文 前2条
1 张旭锋;传输线理论及电磁兼容计算的半解析方法研究[D];国防科学技术大学;2011年
2 张卉;非均匀传输线场路特性研究[D];北京交通大学;2008年
相关硕士学位论文 前1条
1 钟政良;系统布线的电磁兼容研究[D];西安电子科技大学;2006年
,本文编号:1682627
本文链接:https://www.wllwen.com/kejilunwen/wltx/1682627.html