基于无线传感网络的果树灌溉系统的设计
发布时间:2018-04-16 15:26
本文选题:无线传感网络 + GPRS ; 参考:《陕西科技大学》2014年硕士论文
【摘要】:我国是一个农业大国,农作物的优质高产对国家的经济发展意义重大。同时,我国是一个水资源分布不均的国家,采用传统的灌溉方式对水资源浪费比较大。若根据土壤墒情信息对果树进行灌溉,则能提高灌溉用水的利用率,,缓解我国水资源日趋紧张的矛盾。本文主要工作可总结如下: (1)设计一套基于无线传感网络的果树灌溉系统,可以根据采集的土壤墒情信息对果树进行自动化灌溉控制。该系统主要由传感器节点、无线网关和上位机三个部分组成,其中,传感器节点主要由土壤湿度传感器和ZigBee模块组成;无线网关由ZigBee模块、GPRS模块、单片机和灌溉阀门组成;上位机接收土壤墒情信息,根据接收到的土壤墒情信息做出决策,发送灌溉控制指令。 (2)在通信方式上采用ZigBee与GPRS网络相结合的体系结构。传感器节点与无线网关之间采用ZigBee无线通信的方式进行通信,无线网关与上位机间的距离较远因而采用GPRS无线通信。本文对传感器节点与无线网关节点的软件进行设计。传感器节点软件主要包括土壤墒情信息的采集与ZigBee数据发送函数的编写,其中,ZigBee通信程序的编写是在TI公司提供的Z-Stack基础上完成的。无线网关的软件主要包括ZigBee网络的建立与GPRS驱动程序设计。 (3)根据系统实际需求以及LEACH协议(低功耗自适应集簇分层型协议)在系统应用中的不足,采用一种改进型LEACH路由协议。在簇首选择机制中加入能量控制条件,增大剩余能量较多的传感器节点成为簇首节点的可能性。加入数据周期性采集机制,定时向上位机发送土壤墒情信息。若簇首与无线网关间距离较远则采用多跳形式进行通信。为减少系统传输的数据量,系统采用分批估计算法对多个传感器节点采集到的土壤墒情信息进行数据处理。 (4)采用Visual Basic6.0完成系统监控软件的设计。选择MicrosoftAccess数据库作为本系统的数据库。该监控软件包含登录和控制两个界面,用户登陆后,可以实时监测土壤墒情信息、查看历史时刻土壤墒情信息以及发送灌溉指令。 最后,借助串口调试助手对ZigBee模块间的通信、ZigBee和GPRS通信误包率以及对整个系统进行综合测试,测试表明ZigBee模块间可以正常通信,系统通信的误包率较小,本系统可以完成土壤墒情信息的采集与传输以及对灌溉阀门的控制。
[Abstract]:China is a large agricultural country, the good quality and high yield of crops is of great significance to the economic development of our country.At the same time, China is a country with uneven distribution of water resources.If the fruit trees are irrigated according to soil moisture information, the utilization rate of irrigation water can be improved, and the contradiction of water resources becoming more and more tight in China can be alleviated.The main work of this paper can be summarized as follows:1) A fruit tree irrigation system based on wireless sensor network is designed, which can automatically control the irrigation of fruit trees according to the collected soil moisture information.The system consists of three parts: sensor node, wireless gateway and upper computer. The sensor node is composed of soil moisture sensor and ZigBee module, and the wireless gateway is composed of ZigBee module, single chip microcomputer and irrigation valve.The upper computer receives the soil moisture information, makes the decision according to the received soil moisture information, and sends the irrigation control instruction.The architecture of ZigBee and GPRS network is adopted in communication mode.The wireless communication between sensor nodes and wireless gateway is based on ZigBee wireless communication, and the distance between wireless gateway and host computer is long, so GPRS wireless communication is adopted.The software of sensor node and wireless gateway node is designed in this paper.The sensor node software mainly includes the collection of soil moisture information and the compilation of ZigBee data sending function. The communication program of ZigBee is completed on the basis of Z-Stack provided by TI company.The software of wireless gateway mainly includes the establishment of ZigBee network and the design of GPRS driver.According to the actual requirement of the system and the deficiency of the LEACH protocol (low power adaptive cluster hierarchical protocol) in the application of the system, an improved LEACH routing protocol is adopted.The energy control condition is added to the cluster head selection mechanism to increase the possibility that the sensor node with more residual energy can become the cluster head node.The periodic data collection mechanism is added, and the soil moisture information is sent to the host computer periodically.If the distance between cluster head and wireless gateway is long, multi-hop communication is adopted.In order to reduce the amount of data transmitted by the system, the batch estimation algorithm is used to process the soil moisture information collected by multiple sensor nodes.Visual Basic6.0 is used to complete the design of the system monitoring software.MicrosoftAccess database is chosen as the database of this system.The monitoring software includes two interfaces: login and control. After landing, the user can monitor soil moisture information in real time, check soil moisture information at historical time and send irrigation instructions.Finally, with the aid of serial port debugging assistant, the communication error rate between ZigBee module (ZigBee) and GPRS module and the whole system are tested. The test results show that the ZigBee module can communicate normally, and the system communication error rate is small.The system can collect and transmit soil moisture information and control the irrigation valve.
【学位授予单位】:陕西科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP212.9;TN929.5;TP273
【参考文献】
相关期刊论文 前10条
1 赵养社;;基于无线传感器网络和GPRS网的灌溉系统研究[J];安徽农业科学;2011年07期
2 韩立岩;那婉姣;王亮;;节水灌溉技术研究[J];现代农业科技;2009年04期
3 李杰;曹玉华;;以色列节水农业对我国的启示[J];现代农业科技;2011年07期
4 王钦;;基于ZigBee技术的无线传感网络研究与实现[J];重庆理工大学学报(自然科学);2011年08期
5 Hesham Abusaimeh;;Dynamic Cluster Head for Lifetime Efficiency in WSN[J];International Journal of Automation & Computing;2009年01期
6 杨宝东;孔祥成;;探索中国农业现代化的节水之路[J];吉林水利;2010年12期
7 伍伟杰;叶邦彦;;基于CAN总线的节水灌溉自控系统设计与研究[J];节水灌溉;2006年01期
8 赵燕东;章军富;尹伟伦;陈峻崎;胡剑非;;按植物需求精准节水灌溉自动调控系统的研究[J];节水灌溉;2009年01期
9 陈凤;赵春江;郑文刚;申长军;;基于PLCC技术的农业节水灌溉自动控制器的设计与应用[J];节水灌溉;2010年02期
10 唐娟;王文娣;高立艾;;面向精准灌溉的无线农田温湿度检测系统[J];节水灌溉;2012年04期
本文编号:1759528
本文链接:https://www.wllwen.com/kejilunwen/wltx/1759528.html