当前位置:主页 > 科技论文 > 网络通信论文 >

基于WLAN和ZigBee的室内定位技术研究

发布时间:2018-06-04 03:45

  本文选题:WLAN/ZigBee + 室内定位 ; 参考:《辽宁工业大学》2014年硕士论文


【摘要】:如今,室内定位技术在室内导航、社交、市场推广、物流跟踪等各种位置服务的应用中发挥着极其重要的作用。由于WLAN网络已大量部署且成本低廉,ZigBee凭借功耗小、成本低和可靠性高的优点,因此基于泛在网络WLAN及ZigBee的室内定位已经成为定位技术研究的热点。为满足更高的精度要求,室内定位技术的研究趋势正由同构网络向异构网络协同定位方向延伸。论文主要做以下三方面的研究。 首先,研究了不同权值的加权质心定位算法并进行对比分析。针对加权质心定位算法存在的边缘区域定位误差大的问题,提出了一种ZigBee网络下基于距离比值的加权质心定位算法。该方法结合信号强度距离损耗简化模型,采用未知节点到信标节点的距离比值作为权值因子,相对于传统加权质心算法,可以减小某个加权因子值偏大对定位结果产生的影响。仿真表明,该方法不仅明显降低了算法的平均定位误差,而且对加权质心算法的边缘劣势有较明显的改善。 然后,针对基于粒子群优化算法的室内定位方法中迭代次数过多,容易陷入局部最优解的缺点,利用了基于线性时变惯性权重的粒子群优化算法,根据迭代次数调整惯性权重的值。针对测距误差越大对定位误差影响越大的问题,,提出了改进的适应度函数,采用残差加权的最小二乘法适应度函数代替均方误差的适应度函数。仿真结果表明,改进的算法不仅能避免陷入局部最优值,减少迭代次数,而且还降低了测距误差变化对定位误差的影响。 最后,对异构网络下的室内网络定位方法进行研究,针对WLAN和ZigBee网络定位各自优势互补的特性,提出了基于ZigBee加权质心和WLAN粒子群优化的异构网络协同定位算法。采用加权质心法初始值周边区域作为粒子群初始位置区域,进行粒子寻优,以缩小粒子群的搜索范围。仿真结果显示,本算法不仅提高了定位精度,缩小了粒子群优化算法的初始值区域,而且减少了迭代次数,降低了算法的复杂度。
[Abstract]:Nowadays, indoor positioning technology plays an extremely important role in the application of indoor navigation, social networking, marketing, logistics tracking and other location services. Due to the advantages of low power consumption, low cost and high reliability, WLAN network has been deployed in large numbers. Therefore, indoor positioning based on ubiquitous network WLAN and ZigBee has become a hot spot in localization technology. In order to meet the higher precision requirement, the research trend of indoor positioning technology is extending from isomorphic network to heterogeneous network. The paper mainly does the following three aspects of research. Firstly, the weighted centroid localization algorithm with different weights is studied and compared. A weighted centroid location algorithm based on distance ratio in ZigBee network is proposed to solve the problem of large error of edge location in weighted centroid localization algorithm. Combined with the simplified model of signal intensity distance loss, the ratio of unknown node to beacon node is used as the weight factor. Compared with the traditional weighted centroid algorithm, the influence of the value of a certain weighting factor on the location result can be reduced. Simulation results show that this method not only reduces the average positioning error of the algorithm, but also improves the edge disadvantage of the weighted centroid algorithm. Then, aiming at the shortcomings of the indoor localization method based on particle swarm optimization, which is easy to fall into the local optimal solution, the particle swarm optimization algorithm based on linear time-varying inertia weight is used. Adjust the value of inertia weight according to the number of iterations. In order to solve the problem that the greater the ranging error is, the improved fitness function is proposed, and the least square fitness function is used to replace the fitness function of mean square error. Simulation results show that the improved algorithm can not only avoid falling into local optimal value and reduce the number of iterations, but also reduce the influence of ranging error on location error. Finally, the indoor network location method based on heterogeneous network is studied. According to the complementary advantages of WLAN and ZigBee network localization, a cooperative location algorithm based on ZigBee weighted centroid and WLAN particle swarm optimization is proposed. In order to reduce the searching range of particle swarm, the initial value of weighted centroid method is used as the initial position region of particle swarm. Simulation results show that the proposed algorithm not only improves the positioning accuracy and reduces the initial region of PSO, but also reduces the number of iterations and the complexity of the algorithm.
【学位授予单位】:辽宁工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN92

【参考文献】

相关期刊论文 前10条

1 孙玮琢;迟卫;王擎宇;;加权质心定位误差的反向修正法[J];传感技术学报;2012年01期

2 徐玉滨;邓志安;马琳;;基于核直接判别分析和支持向量回归的WLAN室内定位算法[J];电子与信息学报;2011年04期

3 于秦;肖志辉;姜微;;基于WLAN和WSN的异构网络协同定位[J];电信科学;2013年07期

4 唐笑谋;唐佳杰;;基于仿射传播聚类的概率分布室内定位算法[J];电信工程技术与标准化;2013年08期

5 程远国;李煜;徐辉;;基于多元高斯概率分布的无线局域网定位方法研究[J];海军工程大学学报;2007年05期

6 李文杰;李方方;魏红;;基于支持向量机的位置相关计算[J];计算机仿真;2008年02期

7 黄艳;臧传治;于海斌;;基于改进粒子群优化的无线传感器网络定位算法[J];控制与决策;2012年01期

8 姜乐水;;浅谈无线局域网(WLAN)技术[J];信息技术与信息化;2012年05期

9 杨新宇;孔庆茹;戴湘军;;一种改进的加权质心定位算法[J];西安交通大学学报;2010年08期

10 杨萍;李智;;一种基于RSSI的权重值选择及加权定位算法[J];信息与电子工程;2012年02期

相关博士学位论文 前2条

1 张明华;基于WLAN的室内定位技术研究[D];上海交通大学;2009年

2 陈淼;基于信号强度的WLAN室内定位跟踪系统研究[D];武汉大学;2012年

相关硕士学位论文 前2条

1 谢代军;无线局域网室内定位技术研究[D];解放军信息工程大学;2013年

2 张兴;WLAN室内定位信号特征提取算法研究[D];哈尔滨工业大学;2013年



本文编号:1975745

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/1975745.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户602d1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com