水资源监测物联网平台的设计
发布时间:2018-06-05 13:39
本文选题:物联网平台 + 水资源监测 ; 参考:《哈尔滨工业大学》2014年硕士论文
【摘要】:我国是一个水资源大国,但由于人口众多,人均水资源量却低于全球平均水平。另外我国水旱灾害频繁发生,水污染较为严重,导致水资源日益短缺。水资源监测无疑是解决水资源日益短缺的重要基础手段。目前水资源监测以远程自动监测为主,正朝着智能化和网络化的方向发展。物联网技术的兴起与应用,能够提高水资源监测技术和质量。物联网既能融入到不同的应用实例中,也能够针对某一领域构建统一平台,为不同应用实例提供接口服务,实现资源的共享。 本文针对水资源监测设计一种物联网平台,将平台分为感知层、网络层和应用层三部分,对平台感知层和应用层软硬件系统进行设计和实现。在平台感知层,设计并实现一种物联网网关和ZigBee无线传感器网络原型系统。物联网网关用于传输监测数据,使用S3C2410作为微处理器,使用Linux作为嵌入式操作系统,使用以太网和GPRS网络两种方式接入监测网络,使用RS485接口和ModBus协议采集多种水资源监测仪表的监测数据,通过RS232接口采集ZigBee网络的监测数据。ZigBee无线传感器网络用于采集水资源数据,使用以CC2430为核心的硬件平台,使用Z-Stack作为ZigBee协议栈,在此基础上实现ZigBee节点的软件系统,能够对温度进行采集。在平台网络层,使用公共网络传输水资源监测数据。在平台应用层,设计并实现了远程实时监测管理系统、数据查询系统和用于平台二次开发的应用系统接口。 在实验室环境下对平台进行测试。经测试,平台的基本功能已实现。该平台是一种通用的水资源监测平台,在实现水资源远程监测的基础上,,能够支持以RS485为数据输出接口、以ModBus为数据传输协议的智能监测仪表的联网,兼容满足水利部水资源监测数据传输规约的数据传输终端,能够为第三方应用提供接口服务,为用户提供数据查询平台,具有良好的扩展性和二次开发能力。
[Abstract]:China is a large country of water resources, but the per capita water resources is lower than the global average because of its large population. In addition, flood and drought disasters occur frequently in our country, and water pollution is serious, which leads to the shortage of water resources day by day. Monitoring of water resources is undoubtedly an important basic means to solve the growing shortage of water resources. At present, the monitoring of water resources is mainly based on remote automatic monitoring, and is developing towards the direction of intelligence and networking. The rise and application of Internet of things technology can improve water resources monitoring technology and quality. The Internet of things can not only be integrated into different application examples, but also can build a unified platform for a certain field, which can provide interface services for different application cases and realize the sharing of resources. The platform is divided into three parts: perceptual layer, network layer and application layer. The software and hardware systems of platform awareness layer and application layer are designed and implemented. In the platform sensing layer, a prototype system of Internet of things gateway and ZigBee wireless sensor network is designed and implemented. The Internet of things gateway is used to transmit monitoring data, S3C2410 is used as microprocessor, Linux is used as embedded operating system, Ethernet and GPRS network are used to access the monitoring network. RS485 interface and ModBus protocol are used to collect monitoring data of various water resources monitoring instruments. Monitoring data of ZigBee network are collected by RS232 interface. ZigBee wireless sensor network is used to collect water resources data. CC2430 is used as the core hardware platform. Using Z-Stack as ZigBee protocol stack, the software system of ZigBee node is implemented, which can collect temperature. In the platform network layer, the public network is used to transmit water resources monitoring data. In the application layer of the platform, the remote real-time monitoring management system, the data query system and the application system interface for the secondary development of the platform are designed and implemented. The platform is tested in the laboratory environment. After testing, the basic function of the platform has been realized. The platform is a universal monitoring platform for water resources. On the basis of remote monitoring of water resources, it can support the networking of intelligent monitoring instruments with RS485 as the data output interface and ModBus as the data transmission protocol. The data transmission terminal which is compatible with the water resources monitoring data transmission protocol of the Ministry of Water Resources can provide interface service for the third party application and provide the data query platform for the user. It has good expansibility and secondary development ability.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:X84;TN929.5;TP391.44
【参考文献】
相关期刊论文 前10条
1 崔长俊;张喜双;王桂荣;王红建;;水质自动监测站建设的要求与管理的思考[J];环境科学与管理;2007年02期
2 蒋鹏;;基于无线传感器网络的湿地水环境远程实时监测系统关键技术研究[J];传感技术学报;2007年01期
3 周拥军,万里青,范治玉;I~2C总线在数字视频记录仪中的应用与实现[J];电光与控制;2004年02期
4 朱小襄;ModBus通信协议及编程[J];电子工程师;2005年07期
5 宋凯,甘岚,严丽平;U-Boot在S3C2410上的移植分析[J];华东交通大学学报;2005年05期
6 刘国忠,王磊,邓文怡,李月强,吕乃光;环境水质远程监测技术研究[J];航空精密制造技术;2003年01期
7 王宝军;;水质自动监测技术的发展现状[J];科技致富向导;2010年23期
8 俸皓,王涣涛,李海聪;基于GPRS的水资源质量监控解决方案[J];通信与信息技术;2004年05期
9 瞿富强;李志宏;吴永吉;韩建新;张锡炜;杨启龙;;水情自动测报系统遥测终端的开发与应用[J];水电厂自动化;2009年02期
10 张洋洋;赵建平;徐娟娟;;基于物联网技术的水文监测系统研究[J];通信技术;2012年04期
本文编号:1982171
本文链接:https://www.wllwen.com/kejilunwen/wltx/1982171.html