基于进化计算的Ad Hoc拓扑控制研究
本文选题:拓扑控制 + 全局优化 ; 参考:《西安电子科技大学》2014年硕士论文
【摘要】:移动Ad Hoc网络是许多具有信息传输能力的信息传输节点组成的无线的、可移动的网络。移动Ad Hoc无线网络在军事领域、商业领域、医疗卫生、智能化家居等各种场合都受到了广泛的关注和得到了广泛的应用就是由于移动Ad Hoc无线网络具有可移动、无线传输等优点。但是,随着移动Ad Hoc中网络节点以及移动终端呈现出多样化,为了提高网络的性能,就必须对影响移动无线网络性能的因素探索和研究,因此对移动Ad hoc无线网络相关问题的研究具有很重要的现实和理论意义。对移动Ad Hoc无线网络的拓扑控制的主要目标是构建具有某种全局性能的拓扑结构,拓扑结构的构造一般是利用对网络节点信息传输的半径以及信息传输的路径等方法以达到提高移动Ad Hoc网络生存周期以及减少移动无线网络能量消耗等目的。通过对拓扑控制的研究,分析了移动Ad Hoc无线网络性能受拓扑控制的影响。在分析和研究的基础上,对移动Ad Hoc无线网络的生存周期、网络进行信息传输时的能量消耗等方面进行了研究。因此,本文主要对以下几个方面的工作进行了研究:1.简要的介绍了移动Ad Hoc网络的特点,分析总结现有拓扑控制算法的定义、目标和手段等。并且对遗传算法的概念、定义以及在工程及其他方面的应用等做简要的介绍;此外对单目标全局优化和多目标优化的定义、概念以及现有的求解方法等进行介绍,为后续的最大化网络生存周期单目标优化模型以及最大化网络生存周期、最小能量消耗双目标优化模型的求解奠定理论基础。2.针对网络拓扑变化较慢的网络,以及网络拓扑基本无变化的移动Ad Hoc网络,综合考虑节点发射能量消耗,传输能量消耗以及接收能量消耗对网络生存周期的影响,建立了一个以最大限度的延长网络生存周期为目标的单目标优化模型。利用遗传算法对模型进行求解,分析了双点交叉算子和双点变异算子在全局搜索中的不足,进而采用环形交叉算子和环形变异算子进行全局搜索,避免陷入局部最优,提高了搜索全局最优解的能力,找到最大化网络生存周期的网络拓扑。研究了在相同电路损耗以及路径损耗指数对最大化网络生存周期拓扑控制的影响,此外电路损耗以及路径损耗指数对遗传算法的收敛性影响也进行了研究。当网络中节点的最大能量以及电路损耗均不同的时候对模型进行求解,以求得网络中异构节点情况下的最大化网络生存周期网络拓扑。3.移动无线网的能量消耗是影响移动无线网络发展的显著性问题。因此,网络能量消耗的优化也是需要考虑的问题,最大化网络生存周期路径和最小能量消耗路径一般来说是不一样的,甚至是互斥的,所以我们建立了一个以最大化网络生存周期和网络最小能量消耗为优化目标的双目标优化模型,以实现对Ad Hoc的拓扑控制。采用NSGA-II对双目标优化模型进行求解,得到模型的最优解,即最优网络拓扑。研究了在相同电路损耗以及路径损耗指数对最大化网络生存周期拓扑控制以及最小网络能量消耗的影响,当网络中节点的最大能量以及电路损耗均不同的时候对模型进行求解以求得异构节点Ad Hoc下最大化网络生存周期的网络拓扑。
[Abstract]:Mobile Ad Hoc network is a wireless, mobile network which is composed of information transmission nodes with information transmission capability. Mobile Ad Hoc wireless network has been widely concerned and widely used in various occasions such as military, business, medical and intelligent home and so on. It is due to the mobile Ad Hoc wireless network. It has the advantages of mobile and wireless transmission. However, with the diversity of network nodes and mobile terminals in mobile Ad Hoc, in order to improve the performance of the network, it is necessary to explore and study the factors that affect the performance of mobile wireless network. Therefore, it is very important and theoretical to study the problem of mobile Ad hoc wireless network. The main goal of topology control for mobile Ad Hoc wireless networks is to construct a topology with a certain global performance. The structure of the topology is generally used to improve the lifetime of the mobile Ad Hoc network and reduce the energy of mobile wireless network by means of the method of transmitting the network node information and the path of information transmission. Through the study of topology control, the influence of topology control on the performance of mobile Ad Hoc wireless network is analyzed. On the basis of analysis and research, the life cycle of mobile Ad Hoc wireless network and the energy consumption of network for information transmission are studied. Therefore, this paper mainly works on the following aspects Research is carried out: 1. briefly introduces the characteristics of mobile Ad Hoc network, analyzes and summarizes the definition of existing topology control algorithms, targets and means, and gives a brief introduction to the concept, definition and application of genetic algorithms in engineering and other aspects, and the definition of the single target global optimization and multi-objective optimization, and the concept of the concept for the concept of the concept of the single target global optimization and the multi-objective optimization. And the existing solution methods are introduced, which lays a theoretical foundation for the subsequent maximum network survival cycle single objective optimization model, maximum network lifetime, minimum energy consumption dual objective optimization model,.2. network with slow network topology change, and mobile Ad Hoc network with no change in network topology. Considering the effects of energy consumption, energy consumption and energy consumption on the network lifetime, a single objective optimization model is established to maximize the lifetime of network. The model is solved by using genetic algorithm, and the two point crossover operator and double point mutation operator are analyzed in the global situation. The global search is carried out by circular crossover operator and annular mutation operator, and the local optimal is avoided, the ability to search the global optimal solution is improved and the network topology that maximizes the network lifetime is found. The topology control of the maximum network lifetime in the same circuit loss and path loss index is studied. In addition, the influence of circuit loss and path loss index on the convergence of genetic algorithm is also studied. When the maximum energy of the node and the loss of the circuit are different in the network, the model is solved to obtain the maximum network network topology.3. mobile wireless network under the condition of heterogeneous nodes in the network. Energy consumption is a significant problem that affects the development of mobile wireless networks. Therefore, the optimization of network energy consumption is also a problem to be considered. The maximum network life cycle path and minimum energy consumption path are generally different, or even mutually exclusive, so we have established a maximum network lifetime and network. The minimum energy consumption is the dual objective optimization model of the optimized target to realize the topology control of Ad Hoc. The NSGA-II is used to solve the dual objective optimization model, and the optimal solution of the model is obtained, that is, the optimal network topology. The optimal network topology control and the minimum network lifetime are studied in the same circuit loss and the path loss index. The influence of network energy consumption, when the maximum energy of the node and the loss of the circuit are different, the model is solved to obtain the network topology of the maximum network lifetime under the heterogeneous node Ad Hoc.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN929.5
【相似文献】
相关期刊论文 前10条
1 张学;龚海刚;刘明;;无线传感器网络拓扑控制的理论探讨[J];计算机科学;2010年10期
2 邓建良;王景;胡松华;郭建丁;;无线Mesh网络结构的拓扑控制策略[J];无线电通信技术;2011年04期
3 许蒙蒙;杨清海;;局部信息约束下的拓扑控制[J];北京邮电大学学报;2014年S1期
4 邹超伟;;传感器网络层次拓扑控制关键问题研究[J];科技信息;2009年03期
5 陈晶;刘亚斌;刘建东;赵黎;林青云;杜瑞颖;;无线Mesh网络中基于人工免疫的容错拓扑控制[J];山东大学学报(理学版);2012年09期
6 陈争宝;陈旺虎;;面向任务型无线传感器网络的拓扑控制方法[J];计算机工程;2013年04期
7 张学;陆桑璐;陈贵海;陈道蓄;谢立;;无线传感器网络的拓扑控制[J];软件学报;2007年04期
8 卞永钊;于海斌;曾鹏;;无线传感器网络中的拓扑控制[J];计算机应用研究;2008年10期
9 刘强;卢东昕;张焕水;那成亮;;无线传感器网络拓扑控制分析[J];电信快报;2006年06期
10 甘从辉;郑国强;唐盛禹;;无线传感器网络的拓扑控制研究[J];计算机应用研究;2009年09期
相关会议论文 前3条
1 许蒙蒙;杨清海;;局部信息约束下的拓扑控制[A];2013年全国通信软件学术会议论文集[C];2013年
2 胡贵龙;郑宝龙;;MANET中基于拓扑控制的节能策略[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
3 董明杰;裴庆祺;楼顺天;;基于网格的Voronoi无线传感器网络成簇拓扑控制[A];2006全国复杂网络学术会议论文集[C];2006年
相关重要报纸文章 前1条
1 李铭;拓扑控制[N];计算机世界;2004年
相关硕士学位论文 前10条
1 于博洋;基于发射功率调整的无线传感器网络的拓扑控制[D];南开大学;2009年
2 赵琳;面向干扰优化的传感网拓扑控制[D];北京林业大学;2015年
3 沈自伟;无线Mesh网络中的接入点部署与拓扑控制研究[D];电子科技大学;2013年
4 魏亚青;Ad Hoc网络拓扑控制及其分簇研究[D];中南大学;2009年
5 吴志斌;无线传感器网络自适应拓扑控制研究[D];河南大学;2009年
6 王文艳;基于拓扑控制的Ad hoc网络生存期研究[D];湖南大学;2010年
7 翟普;基于地理位置的WSN拓扑控制技术研究[D];沈阳理工大学;2014年
8 宋鑫;Ad Hoc网络自适应拓扑控制与实现[D];电子科技大学;2015年
9 黄利辉;无线Ad Hoc网络生存能力控制算法的研究与实现[D];南京理工大学;2008年
10 钱旭;基于EDL-CHS算法的无线HART网络拓扑控制研究[D];西南大学;2012年
,本文编号:1987181
本文链接:https://www.wllwen.com/kejilunwen/wltx/1987181.html