正交空频分组码波形设计与软件无线电平台实现
本文选题:正交空频分组码 + Matlab ; 参考:《电子科技大学》2014年硕士论文
【摘要】:近年来,M IMO技术备受瞩目,在新一代移动通信中占据着重要位置。MIMO技术是一种能够有效改善通信质量的多天线技术,从空间、时间、频域三个角度开发利用了空间资源和频谱资源。在不增加频谱资源或者不增大天线发射功率的前提下,提高了传输效率,增加了信道容量。正交空频分组码技术是MIMO技术中的一种非常重要的实现方式,采用在不同频率、不同天线上发射数据多个副本的方式,利用频域和空间分集提高了数据传输的可靠性。因此,论文设计了一种正交空频分组码的波形,并在团队自主研发的软件无线电平台上完成了演示验证。论文主要研究工作包括:第一,正交空频分组码波形的设计。论文设计了一种可以实际应用的正交空频分组码波形。论文设计的波形带宽为2.73MHz,数据源速率为980kbps,帧速率为2.24Mbps;调制方式采用CRC校验码,1/3码率卷积编码,交织,QPSK调制及OSFB C编译码等。论文将正交空频分组码信号处理流程划分为发射单元、中射频处理单元、同步单元、检测单元四个部分,对每部分的实现算法做了详细的说明,并给出了Matlab仿真结果。仿真结果表明:理想信道估计下的性能与理论曲线相差在1dB范围内,而LS信道估计下的性能恶化在3dB以内。第二,正交空频分组码波形的图形化开发。论文运用图形化开发工具System Generator完成了正交空频分组码波形的开发。实现了正交空频分组码波形的硬件仿真,包括CRC校验、卷积编码和交织、QPSK调制、OSFBC编码、OFD M调制、同步、频偏估计、信道估计及OSFB C译码等。并且完成了发射端的时序验证、接收端同步捕获的验证、接收端的时序验证及CRC校验结果验证等;最后生成bit文件以实现上板调试。第三,正交空频分组码波形的演示验证。论文给出了正交空频分组码波形的发射机、接收机的工作流程及演示平台结构。利用团队自主研发的软件无线电平台,完成了正交空频分组码波形通信性能的测试及分析。实测结果表明:在墙体干扰、人员干扰、机器(如电脑、频谱仪等设备)干扰的室内环境下得到的性能测试结果与M atl ab的仿真结果误差在2dB以内。综上,论文完成了正交空频分组码波形的设计、实现及验证。论文中实现的方案具有可实现性,可直接应用于下一代移动通信系统、无线局域网、物联网等场景,提高系统的发射分集性能。同时本项目也为通信系统的可视化、图形化开发提供了参考。
[Abstract]:In recent years, MIMO technology has attracted much attention. It occupies an important position in the new generation of mobile communication. MIMO technology is a kind of multi-antenna technology that can effectively improve the communication quality. Space resources and spectrum resources are exploited from three angles in frequency domain. The transmission efficiency is improved and the channel capacity is increased without increasing the spectrum resource or the transmit power of the antenna. Orthogonal space-frequency block code technology is one of the most important methods in MIMO technology. By transmitting multiple replicas of data at different frequencies and antennas, the reliability of data transmission is improved by using frequency domain and spatial diversity. Therefore, a waveform of orthogonal space-frequency block codes is designed and demonstrated on the software radio platform independently developed by the team. The main research work includes: first, the waveform design of orthogonal space frequency block codes. In this paper, a practical waveform of orthogonal space frequency block codes is designed. The designed waveform bandwidth is 2.73MHz, the data source rate is 980kbpsand the frame rate is 2.24Mbps.The modulation mode adopts CRC check code / 1 / 3 bit rate convolution coding, interleaved QPSK modulation and OSFB C coding and so on. In this paper, the signal processing flow of orthogonal space-frequency block code is divided into four parts: transmitting unit, radio frequency processing unit, synchronous unit and detection unit. The realization algorithm of each part is explained in detail, and the simulation results of Matlab are given. The simulation results show that the performance difference between the ideal channel estimation and the theoretical curve is in the range of 1dB, while the performance of LS channel estimation is worse than 3dB. Second, the graphic development of orthogonal space frequency block code waveform. In this paper, the waveform of orthogonal space frequency block codes is developed by using the graphical development tool system Generator. Hardware simulation of quadrature space-frequency block codes is implemented, including CRC verification, convolution coding and interleaved QPSK modulation / OSFBC coded OFD M modulation, synchronization, frequency offset estimation, channel estimation and OSFB C decoding. The timing verification of the transmitter, the synchronous acquisition of the receiver, the timing verification of the receiver and the verification of the results of the CRC verification are completed. Finally, the bit file is generated to realize the debugging of the upper board. Third, the demonstration and verification of orthogonal space frequency block code waveform. In this paper, the work flow of the transmitter, receiver and the structure of the demonstration platform of the orthogonal space-frequency block code waveform are presented. Based on the software radio platform developed by the team, the waveform communication performance of orthogonal space-frequency block codes is tested and analyzed. The measured results show that the error between the performance test results and the simulation results of M atl ab is less than 2 dB under the indoor environment of wall interference, human interference, machine interference (such as computer, spectrometer, etc.). In summary, the design, implementation and verification of orthogonal space frequency block code waveform are completed. The scheme can be directly used in the next generation mobile communication system, wireless local area network, Internet of things and so on, and improve the transmission diversity performance of the system. At the same time, this project also provides a reference for the visual and graphical development of communication system.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN929.5
【相似文献】
相关期刊论文 前10条
1 丁宇;;分组码的矩阵识别分析[J];计算机安全;2012年07期
2 麻清华;杨绿溪;何振亚;;一种适合于4发系统的空频分组码的改进编解码方法[J];电路与系统学报;2008年03期
3 强永全,王皎,李道本;一种时空频分组码编码方案和检测算法[J];电路与系统学报;2004年02期
4 刘翠卿,王云鹤,刘玉君,王天宇,杨忠立;分组码的块内卷积交错编码[J];信息工程大学学报;2004年03期
5 李科;侯春萍;汪清;傅金琳;;基于四元数正交设计的三极化正交空时极分组码[J];计算机应用研究;2011年11期
6 徐华;;基于中国余定理的分组码在协作通信中的应用[J];微电子学与计算机;2011年12期
7 徐华;;一种改进的基于中国余定理QC-LDPC码设计方法[J];微电子学与计算机;2014年02期
8 袁东风,高春艳,张立军;Rayleigh衰落信道中分组码最大似然译码的性能[J];通信技术;2000年02期
9 彭万权;;并行级联分组码基于相关运算的叠加反馈译码[J];计算机仿真;2009年06期
10 杨艳;邵朝;;空时网格编码级联分组码研究[J];西安邮电学院学报;2011年05期
相关会议论文 前4条
1 李军科;张俊;顾亚平;;BCH分组码原理、实现及纠错性能分析[A];第二届全国信息获取与处理学术会议论文集[C];2004年
2 程红兵;马猛;焦秉立;;一种用于CP-CDMA系统的正交频率分组码:——梳状频谱码[A];2004’中国通信学会无线及移动通信委员会学术年会论文集[C];2004年
3 张仲明;许拔;张尔扬;;准循环LDPC分组码和卷积码的构造[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
4 岳殿武;;关于纠错码的若干新方向[A];信息科学与微电子技术:中国科协第三届青年学术年会论文集[C];1998年
相关博士学位论文 前2条
1 刘陈;无线通信系统中的空时编码技术[D];东南大学;2005年
2 谢磊;非均匀保护分组码的研究[D];浙江大学;2002年
相关硕士学位论文 前4条
1 刘芳;正交空频分组码波形设计与软件无线电平台实现[D];电子科技大学;2014年
2 丁宇;分组码盲识别的算法研究[D];杭州电子科技大学;2013年
3 刘宗辉;交织和分组码参数盲估计与识别技术[D];电子科技大学;2011年
4 张幼承;高性能级联编码技术研究[D];大连海事大学;2006年
,本文编号:2078241
本文链接:https://www.wllwen.com/kejilunwen/wltx/2078241.html