当前位置:主页 > 科技论文 > 网络通信论文 >

大型天线抗风扰伺服控制方法研究

发布时间:2018-07-09 12:37

  本文选题:LQG + 卡尔曼滤波器 ; 参考:《西安电子科技大学》2014年硕士论文


【摘要】:抗风扰控制方法研究是大型天线伺服控制的重要内容,它与大型天线伺服控制系统的控制精度、稳定性和鲁棒性有着密切的联系。针对大口径天线伺服控制系统在风扰动较大的情况下跟踪目标会产生较大指向误差的问题,为达到跟踪精度和指向精度的要求,本文研究了带有扰动观测器的PI+LQG控制方法;深入研究了该控制方法应用于大型天线伺服系统的具体方法,探讨了LQG控制器权矩阵整定的问题,设计开发了相应的工程软件;并搭建天线伺服实验平台,对该控制方法进行工程实践研究。进行了仿真和实际系统实验,结果表明伺服系统的性能得到了优化,系统对风扰动的抑制能力显著增强。本文主要工作及创造性成果如下:1、研究了天线建模和风载建模理论方法。针对LQG控制器需要被控系统精确模型的特点,介绍了天线速度环建模的方法;分析了天线风载荷的组成,介绍了风载荷作为天线速度环输入模式的建模方法,为控制方法的仿真和实验提供了风扰信号来源。2、针对大型天线受风干扰会产生产生形变和振动的问题,提出了在模态空间坐标系下设计PI+LQG的方法。LQG模态控制器根据kalman状态估计器估计的系统模态状态,以此作为状态反馈应用于LQR最优控制。分析了LQG控制器权矩阵整定的方法,设计开发了基于Matlab的权矩阵整定GUI软件,通过该软件可以方便快速地完成参数整定,使系统达到所期望的控制精度和抗风扰性能。3、对于系统在恒值干扰作用下kalman估计器出现估值不准的问题,在PI+LQG控制的基础上加入扰动观测器来观测并补偿风干扰。详细介绍了扰动观测器的原理和Q滤波器的设计方法,通过在Matlab/Simulink平台上进行仿真实验,对比于PI控制器说明本文研究的控制方法抗风扰能力有大幅度的提高。4、搭建了天线伺服控制实验平台,在实际系统中验证了本文研究控制方法的有效性。介绍了实验平台的构成,详细说明了实验平台相关软件开发和控制算法软件的实现;在实验平台上对本文研究的控制方法进行测试实验,实验结果表明本文研究的控制方法显著了提高了伺服系统的抗风扰能力和跟踪精度。通过对上述内容的研究,为大型天线抗风扰伺服控制提出了一种可行方案,为本课题的进一步发展奠定了一定的基础。
[Abstract]:The study of wind resistance control method is an important part of the large antenna servo control. It has a close connection with the control precision, stability and robustness of the large antenna servo control system. In the case of large aperture antenna servo control system, the tracking target will produce large pointing error in the case of large wind disturbance, so as to achieve the tracking of the servo control system. In this paper, the PI+LQG control method with disturbance observer is studied in this paper. The specific method of applying the control method to the large antenna servo system is studied. The problem of setting the weight matrix of the LQG controller is discussed. The corresponding engineering soft parts are designed and developed, and the antenna servo experimental platform is set up to control the control. The simulation and actual system experiments are carried out. The results show that the performance of the servo system is optimized and the ability of the system to suppress the wind disturbance is significantly enhanced. The main work and creative results of this paper are as follows: 1, the method of Antenna Modeling and wind load modeling is studied. The LQG controller needs the precision of the controlled system. The characteristic of the model is to introduce the method of the modeling of the antenna speed loop, analyze the composition of the wind load of the antenna, introduce the wind load as the modeling method of the input mode of the antenna speed ring, and provide the source of the wind disturbance signal.2 for the simulation and experiment of the control method, and put forward the problem that the large antenna will produce deformation and vibration caused by the wind interference. The method of designing PI+LQG in the modal space coordinate system.LQG modal controller is based on the system modal state estimated by the Kalman state estimator and uses it as state feedback to the optimal control of LQR. The method of setting the weight matrix of the LQG controller is analyzed. The GUI software is designed and developed based on Matlab, and the software can be convenient through the software. The system achieves the desired control precision and the wind resistance performance.3, which makes the system achieve the desired control precision and wind resistance performance. The disturbance observer is added to the Kalman estimator to observe and compensate wind disturbance on the basis of PI+LQG control. The principle of disturbance observer and the Q filter are introduced in detail. The design method, through the simulation experiment on the Matlab/Simulink platform, compares with the PI controller to show that the control method studied in this paper has a large increase in.4, and the experimental platform of antenna servo control is built. In the actual system, the validity of this method is verified. The composition of the experimental platform is introduced in detail. The software development of the experimental platform related software and the implementation of the control algorithm software are described. On the experimental platform, the control method of this paper is tested. The experimental results show that the control method studied in this paper greatly improves the wind resistance and tracking accuracy of the servo system. Through the research on the above content, the wind resistance of the large antenna is resistant to wind. A feasible scheme is put forward for disturbance servo control, which lays a solid foundation for further development of this subject.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN820.3

【参考文献】

相关博士学位论文 前1条

1 尹正男;具有鲁棒性的最优干扰观测器的系统性设计及其应用[D];上海交通大学;2012年



本文编号:2109382

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2109382.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cff80***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com