当前位置:主页 > 科技论文 > 网络通信论文 >

多子阵阵列的有源校正方法研究

发布时间:2018-07-16 12:15
【摘要】:在实际的工程应用中,各种误差难以避免。这使得实际所得的阵列流形与采用理论解析公式计算的阵列流形差异很大,从而导致超分辨测向算法的性能恶化。阵列校正的主要目的正是抑制阵列误差的影响,为阵列测向提供准确的阵列流形。因此,阵列校正是超分辨测向技术走向实用化的一个瓶颈,并且已成为电子侦察、雷达等诸多领域的研究热点。本文在建立阵列误差模型的基础上,针对多子阵阵列、近场校准源及强干扰源,研究校正阵元位置误差和通道幅相不一致误差的有源校正方法。本文的主要工作如下:1.建立阵列误差模型。首先,为了和阵列误差模型做对比,建立理想情况下的阵列接收信号模型。然后,分别对阵元位置误差和通道幅相不一致误差建立数学模型、分析误差对测向算法性能的影响。2.针对常用阵列,如均匀线阵,研究两种常见的阵列校正方法。利用协方差矩阵的最大特征值对应的特征向量与阵列流形矢量之间的线性,介绍多辅助源校正算法;利用子空间正交的特性,介绍F-W算法。3.针对多子阵阵列,考虑校准源置于多子阵阵列的近场区域的情况,研究有源校正方法。首先,针对近场校准源,利用多子阵阵列中子阵之间的结构特性,对该场景下的阵列误差建立数学模型,提出一种同时校正阵元位置误差和通道幅相不一致误差的多子阵阵列的近场有源校正方法。4.针对强干扰源,提出一种干扰环境下天线阵列流形的测定方法。该方法利用接收信号的协方差矩阵的噪声子空间、信号子空间以及阵列流形的第一个元素等于1等约束条件,实现从受到干扰的天线阵列接收信号中恢复阵列流形矢量,进而为阵列测向提供准确的天线阵列流形等目标。
[Abstract]:In practical engineering application, all kinds of errors are difficult to avoid. This results in a great difference between the actual array manifold and the array manifold calculated by theoretical analytical formula, which leads to the deterioration of the performance of the super-resolution direction finding algorithm. The main purpose of array correction is to suppress the effect of array error and to provide accurate array manifold for array direction finding. Therefore, array correction is a bottleneck of super-resolution direction-finding technology and has become a research hotspot in many fields, such as electronic reconnaissance, radar and so on. Based on the establishment of array error model, the active correction method for position error of array elements and channel amplitude-phase inconsistency error is studied for multi-subarray array, near field calibration source and strong interference source. The main work of this paper is as follows: 1. The array error model is established. Firstly, in order to compare with the array error model, an ideal array receiving signal model is established. Then, the mathematical models of position errors and channel amplitude-phase inconsistency errors are established, and the effect of errors on the performance of direction-finding algorithm is analyzed. For common arrays, such as uniform linear arrays, two common array correction methods are studied. By using the linearity between the eigenvector corresponding to the maximum eigenvalue of the covariance matrix and the array manifold vector, the multi-auxiliary source correction algorithm is introduced, and the F-W algorithm .3 is introduced by using the orthogonality of the subspace. The active correction method is studied for multi-subarray array in which the calibration source is placed in the near-field region of the multi-subarray array. Firstly, according to the near field calibration source, the mathematical model of array error in this scenario is established by using the structural characteristics of the multi-subarray array neutron array. A near field active correction method for multisubarray array is proposed, which corrects the position error of array elements and the error of channel amplitude and phase inconsistency simultaneously. A method of antenna array manifold measurement under interference environment is proposed for strong interference sources. Using the noise subspace of the covariance matrix of the received signal, the signal subspace and the first element of the array manifold equal to 1, the method realizes the recovery of the array manifold vector from the received signal of the disturbed antenna array. And then provide accurate antenna array manifold and other targets for array direction finding.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7

【参考文献】

相关博士学位论文 前1条

1 陈德莉;波达方向估计中阵列误差校正技术研究[D];国防科学技术大学;2008年



本文编号:2126359

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2126359.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8cf3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com