当前位置:主页 > 科技论文 > 网络通信论文 >

选择性AdaBoost SVM语音情感识别算法的研究

发布时间:2018-07-21 11:21
【摘要】:作为人机交互技术中重要的成员之一,语音情感识别技术被广泛应用在教育、医疗、通信、计算机、自动化等行业。同时,语音情感识别涉及的知识面很广,涵盖了计算机科学与技术、模式识别、语音学、心理学、统计学和信号处理等学科。具有良好的研究基础和广阔的发展前景。 目前,语音情感识别的相关研究已经取得很多的成果,同时也存在着许多研究困难。通过改进分类算法准确率可以提高语音情感识别产品和系统的性能,使其提供更好的服务和用户体验,提高一些行业的工作质量和效率,对促进行业发展具有重要意义。 在语音情感识别方面,SVM算法具有很好的分类性能,而AdaBoost算法可以进一步提升SVM算法的分类准确率。 本文以SVM和AdaBoost算法为基础,提出一种新的集成学习算法,即选择性AdaBoostSVM算法,算法思路为:首先使用AdaBoost算法训练若干个SVM分类器,再通过Kmeans算法对这些分类器进行聚类,得到若干个代表分类器,,然后对每一个测试样本,均使用Knn算法从训练集中找出其最近邻的若干训练样本,并将这些训练样本放入代表分类器中测试,最后选出测试准确率最高的分类器作为当前测试样本的最终分类器。 本文在EMO-DB德语语音库、CASIA中文语音库和SAVEE英语语音库下测试算法效果。先找出三个语音库在五倍交叉验证和十倍交叉验证下的最优SVM参数,再分别对三个语音库作五倍交叉验证和十倍交叉验证的测试。 实验结果表明,本文算法对三个语音库的分类准确率均有提升。 在五倍交叉验证中,本文算法对三个语音库的分类准确率较单一SVM算法分别提升了1.86%、1.51%和3.77%,较AdaBoostSVM算法提升了0.35%、0.78%和0.13%,分类准确率达到87.56%、81.75%和76.75%。 在十倍交叉验证中,本文算法对三个语音库的分类准确率较单一SVM算法分别提升了1.46%、0.74%和1.86%,较AdaBoostSVM算法提升了0.21%、0.37%和1.86%,分类准确率达到87.29%、81.20%和76.51%。 说明本文提出的选择性AdaBoostSVM算法在提升语音情感识别准确率上是可行的。
[Abstract]:As an important member of human-computer interaction technology, speech emotion recognition technology is widely used in education, medical treatment, communication, computer, automation and other industries. At the same time, speech emotion recognition involves a wide range of knowledge, covering computer science and technology, pattern recognition, phonetics, psychology, statistics and signal processing and other disciplines. It has a good research foundation and broad development prospect. At present, the research of speech emotion recognition has made a lot of achievements, but also there are many difficulties. By improving the accuracy of classification algorithm, we can improve the performance of speech emotion recognition products and systems, make them provide better service and user experience, and improve the working quality and efficiency of some industries, which is of great significance to promote the development of the industry. SVM algorithm has good classification performance in speech emotion recognition and AdaBoost algorithm can further improve the classification accuracy of SVM algorithm. Based on SVM and AdaBoost algorithm, a new ensemble learning algorithm, selective AdaBoost SVM algorithm, is proposed in this paper. The idea of the algorithm is as follows: firstly, several SVM classifiers are trained by AdaBoost algorithm, and then these classifiers are clustered by Kmeans algorithm. A number of representative classifiers are obtained, and then, for each test sample, the Knn algorithm is used to find some training samples from the training set, and the training samples are put into the representative classifier for testing. Finally, the classifier with the highest test accuracy is selected as the final classifier of the current test sample. In this paper, the algorithm effect is tested in EMO-DB German language corpus, CASIA Chinese language corpus and SAVEE English phonetic database. The optimal SVM parameters of the three speech banks under five times cross validation and ten times cross validation are found out first, and then the five times cross validation and ten times cross verification tests of the three speech banks are performed respectively. The experimental results show that the classification accuracy of the algorithm is improved. In the five-fold cross-validation, the classification accuracy of the three corpora in this paper is 1.86% and 3.77% higher than that of the single SVM algorithm, 0.35% and 0.13% higher than that of the AdaBoost SVM algorithm, respectively, and the classification accuracy is 87.56% and 76.75%. In the 10-fold cross-validation, the classification accuracy of the three corpora in this paper is 1.46% and 1.86% higher than that of the single SVM algorithm, 0.21% and 1.86% higher than that of the AdaBoost SVM algorithm, and the classification accuracy is 87.29% 81.20% and 76.51% higher than that of the AdaBoost SVM algorithm. It shows that the proposed selective boost SVM algorithm is feasible in improving the accuracy of speech emotion recognition.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN912.3

【参考文献】

相关期刊论文 前10条

1 林奕琳;韦岗;杨康才;;语音情感识别的研究进展[J];电路与系统学报;2007年01期

2 黄程韦;赵艳;金峗;于寅骅;赵力;;实用语音情感的特征分析与识别的研究[J];电子与信息学报;2011年01期

3 张永;张卫国;徐维军;;基于数据分割和集成学习的大规模SVM分类算法[J];系统工程;2009年03期

4 李亚军;刘晓霞;陈平;;改进的AdaBoost算法与SVM的组合分类器[J];计算机工程与应用;2008年32期

5 王晓丹;孙东延;郑春颖;张宏达;赵学军;;一种基于AdaBoost的SVM分类器[J];空军工程大学学报(自然科学版);2006年06期

6 王晓丹;高晓峰;姚旭;雷蕾;;SVM集成研究与应用[J];空军工程大学学报(自然科学版);2012年02期

7 李书玲;刘蓉;张鎏钦;刘红;;基于改进型SVM算法的语音情感识别[J];计算机应用;2013年07期

8 张石清;赵知劲;戴育良;杨广映;;支持向量机应用于语音情感识别的研究[J];声学技术;2008年01期

9 韩文静;李海峰;阮华斌;马琳;;语音情感识别研究进展综述[J];软件学报;2014年01期

10 胡洋;吴黎慧;高磊;蒲南江;;基于SVM的语音情感识别研究[J];电子测试;2011年09期

相关博士学位论文 前3条

1 刘佳;语音情感识别的研究与应用[D];浙江大学;2009年

2 程丽丽;支持向量机集成学习算法研究[D];哈尔滨工程大学;2009年

3 赵腊生;语音情感特征提取与识别方法研究[D];大连理工大学;2010年



本文编号:2135356

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2135356.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户987d9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com