基于深度支持向量机的极化SAR图像分类
[Abstract]:Polarimetric synthetic Aperture Radar (Polarimetric Synthetic Aperture) has become a new hotspot in the field of remote sensing due to its ability to provide more abundant target scattering information. As an important research content and key technology of polarimetric SAR image interpretation, the classification of ground objects has great theoretical significance and application value in civil and military fields. Support Vector Machine (SVM) is an effective supervised classification method in statistics, which has been widely used in many fields. In this paper, SVM algorithm is used to study the classification of polarimetric SAR ground objects. The main research results are as follows: 1. In this paper, the least squares support vector machine (LSSVM) algorithm in support vector machine (SVM) algorithm is studied. Considering the disadvantages of the traditional algorithm when using LSSVM model to solve the classification problem, the computational complexity is high, and the solution is not sparse. The model is greatly affected by the sample noise. In this paper, the fuzzy sparse LSSVM algorithm is proposed by combining the fuzzy support vector machine (FSVM) with the sparse solution algorithm of LSSVM, considering the importance of fuzzy membership to fuzzy LSSVM. In this paper, we adopt two methods to measure fuzzy membership based on the distance between the sample and the center of the class, that is, the Euclidean distance based metric method and the kernel distance based measurement method. The proposed algorithm is used to classify the polarimetric SAR data. The proposed algorithm has better performance from the classification results and comparative experiments. The kernel function of LSSVM is studied. When solving nonlinear classification problem, the most important task is to select the kernel function that meets the conditions, and map the sample to the high-dimensional space, thus realizing the linear separability of the high-dimensional space, so the selection of kernel function is the key. The commonly used kernel function is radial basis kernel function, but the result is not very satisfactory when fitting the more complex function. In this paper, the condition of kernel function of support vector machine is analyzed. Then, the kernel function of the sparse LSSVM classifier is changed to the Morlet wavelet kernel function which accords with the kernel function condition, and a wavelet kernel sparse LSSVM algorithm is proposed. The contrast experiment of polarized SAR data classification shows that the sparse LSSVM model based on Morlet wavelet kernel has higher classification accuracy for polarimetric SAR data. The proposed wavelet kernel sparse LSSVM algorithm is extended. Combining the algorithm with the network architecture of deep SVM, a sparse LSSVM model with deep wavelet kernel is proposed. Two hidden layer units are designed in the model, and the activation values corresponding to the support vectors in the lower layer are used as the training samples at the higher level. Based on this, the sparse LSSVM classifier with depth wavelet kernel is trained. Considering the time complexity of the algorithm, the Lasso algorithm is used to solve the second layer, and then the depth Lasso model is constructed. The deep Lasso algorithm and the deep wavelet kernel sparse LSSVM algorithm are validated by UCI data and polarized SAR data, respectively.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
相关会议论文 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:2140751
本文链接:https://www.wllwen.com/kejilunwen/wltx/2140751.html