多进制线性分组码的线性规划译码算法研究
[Abstract]:Since the error-correcting code theory was put forward more than 60 years ago, great achievements have been made in both theory and engineering application, among which Linear programming LP decoding is one of them. In this paper, a new LP decoding algorithm with polynomial time complexity is proposed. The theoretical and experimental results show that the method satisfies the requirements of "ML characteristics" and "codeword independence" under certain conditions. The results show that the algorithm is more efficient than LP decoding algorithm proposed by Flanagan. The main contents and research results are as follows: 1. This paper first introduces the basic concept of linear block code and its Tanner graph representation, and introduces the basic concept of linear programming. Since the optimal value of linear programming is always obtained at the vertex of polyhedron composed of feasible domains, Feldman and others creatively put forward LP decoding theory. Secondly, the LP decoding algorithm of Feldman is discussed, and the LP decoding algorithm based on parity check polyhedron is designed for binary linear block codes. Finally, the simulation results show that the performance of this method is equivalent to that of Feldman LP decoding algorithm. In this paper, the decoding of multiary linear block codes is studied. Firstly, the flow of Belief propagation BP decoding algorithm is described by combining the check matrix of multiary linear block codes and the representation of Tanner diagram. Secondly, the principle of Flanagan LP decoding method and its mathematical optimization model are introduced in detail from the Maximum LikelihoodML decoding algorithm. It is found that the complexity of the Flanagan LP decoding algorithm increases exponentially with the line repetition of the check matrix, and it is difficult to be implemented in engineering. At the same time, the problem of high complexity of the Flanagan LP decoding model is verified by simulation experiments. The study of linear programming polyhedron structure is also an important part of this paper. This paper mainly discusses the basic method of describing multivariate parity check polyhedron, constructs a new 2Q element parity check polyhedron, and gives several important properties of the polyhedron. At last, it analyzes these theories and proves them. In this paper, the problem of LP decoding for multiary linear block codes is discussed, and a new LP decoding algorithm with polynomial time complexity for multiary linear block codes is proposed. For multi-ary linear block codes, the parity-check polyhedron is used to relax ML decoding into a new LP decoding. The linear programming model contains only auxiliary variables and constraints of polynomial complexity. Finally, it is not only proved that if the equivalent binary codeword of the multiary codeword can form the subspace based on GF (2) and the channel satisfies the symmetry characteristic, the LP decoding algorithm has "ML characteristics" and "codeword independence". At the same time, the simulation results show that the LP decoding algorithm not only approximates ML decoding algorithm, but also achieves the same performance as Flanagan LP decoding algorithm, and its execution efficiency under 16QAM modulation is nearly 15 times higher than that of Flanagan LP decoding algorithm.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.22
【相似文献】
相关期刊论文 前10条
1 林楷,邹盛唐,史治平,张雪竹;双向监督复转码的译码算法改进[J];通信技术;2003年04期
2 王冬梅;王秀芳;路敬yN;浦晓威;;LLR-BP算法的简化译码算法研究[J];科学技术与工程;2010年12期
3 曹艳;王红星;;基于维特比算法的VMSK/2译码方式研究[J];遥测遥控;2010年06期
4 唐元元;张德民;刘哲哲;李小文;;TD-LTE系统中软输出球形译码检测算法研究[J];电子技术应用;2012年11期
5 周晓迈,王新梅;用译码算法优化一类{1,-1}~n上的二次函数[J];通信学报;1992年04期
6 刘光亮,胡正名;一种新的软输出译码算法[J];电子科学学刊;1998年04期
7 白玉洁;吕吉贺;白凤山;;一种Nonbinary-Turbo-DFH方案及译码算法[J];通信技术;2013年09期
8 岳珍梅;蔺俊杰;杜少波;;一种改进的球形译码算法性能分析[J];兰州理工大学学报;2013年06期
9 庞臣;徐家品;;多进制低密度奇偶校验码的扩展最小和译码算法研究[J];微型机与应用;2014年05期
10 付永庆,刘雅琴,杜海明;一种短时延的Turbo码并行译码算法[J];信号处理;2004年04期
相关会议论文 前10条
1 肖海勇;毕光国;;联合检测的均衡译码算法[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年
2 刘海涛;程型清;李道本;;低复杂度复球译码检测算法[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年
3 梁栋;李冬霞;;一种改进的Turbo码Log-MAP译码算法[A];2006通信理论与技术新进展——第十一届全国青年通信学术会议论文集[C];2006年
4 张颖;岳殿武;;几何Goppa码的译码[A];第一届中国高校通信类院系学术研讨会论文集[C];2007年
5 周朝霞;王大勇;;一种高速并行的Turbo码译码算法[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(下册)[C];2007年
6 童胜;王鹏;王单;王新梅;;LDPC码量化和积译码的高效实现[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
7 卢而辉;赖信q;谢德望;李肇严;;可运用于线性区块码之新式软式判定译码算法[A];2005年海峡两岸三地无线科技学术会论文集[C];2005年
8 路成业;孙蓉;王新梅;;Turbo码几种译码算法中的量化分析[A];开创新世纪的通信技术——第七届全国青年通信学术会议论文集[C];2001年
9 朱敏;孟庆民;高西奇;;球形译码在MIMO-OFDM系统中的应用[A];第九届全国青年通信学术会议论文集[C];2004年
10 刘钊;李会勇;何子述;刘本永;;VBLAST的一种新的非线性译码算法[A];2006通信理论与技术新进展——第十一届全国青年通信学术会议论文集[C];2006年
相关博士学位论文 前10条
1 林伟;多元LDPC码:设计、构造与译码[D];西安电子科技大学;2012年
2 崔俊云;LDPC码的构造及其译码算法研究[D];西安电子科技大学;2012年
3 黄海艺;低密度奇偶校验(LDPC)码改进译码算法研究[D];华南理工大学;2013年
4 罗天放;通信系统中的Turbo码及Turbo均衡问题研究[D];哈尔滨工程大学;2003年
5 王单;LDPC码编译码算法研究[D];西安电子科技大学;2006年
6 陈晓刚;现代编码的性能分析与简化译码算法[D];北京邮电大学;2010年
7 刘原华;LDPC码的代数构造及译码算法研究[D];西安电子科技大学;2009年
8 胡树楷;LDPC码构造及低复杂度译码算法研究[D];西安电子科技大学;2012年
9 徐朝军;RS码译码算法及其实现的研究[D];西安电子科技大学;2006年
10 赵传钢;LDPC码及迭代接收系统研究[D];北京邮电大学;2006年
,本文编号:2144328
本文链接:https://www.wllwen.com/kejilunwen/wltx/2144328.html