稳健精细抗差异性频谱感知技术研究
[Abstract]:Spectrum sensing technology is the key basic element for the research and development of cognitive dynamic systems. However, with the rapid development of wireless communications, electronic reconnaissance and electronic countermeasures, the types of electronic devices emerge in endlessly, the power levels of various radio signals are more and more different, the more the communication signal system, the detection mode and the interference mode are also. The more and more diversity, the more and more complex space electromagnetic environment, which brings a lot of new needs to be solved and must continue to pay attention to the spectrum sensing technology: 1. robust spectrum sensing in the practical cognitive dynamic system, spectrum sensing technology must have the real-time blind frequency under the extremely low signal to noise ratio and the wireless channel severe fading electromagnetic background. The ability of spectral perception brings great challenge to the robustness of classical spectrum sensing algorithms..2. fine spectrum sensing new generation of wireless communication, monitoring, reconnaissance, and antagonism are more or less moving towards ultra wideband, short-time burst and multi interactive target, and this technology development trend of communication electronics industry is more or less. Cognitive dynamic systems have the ability to have ultra wideband multi-target real-time perception. This is a technical problem for spectral sensing to introduce real time fine analysis in ultra wideband..3. deep spectrum sensing, such as cognitive radar, cognitive electronic countermeasures, cognitive radio, and so on, needs to have the depth of radio signals. The ability to analyze the radio frequency characteristics of any target signal, communication and interference mode, modulation type, waveform forming, wave direction and position and so on, so as to achieve the joint optimization design of the system. However, at present, the technology and equipment of spectrum sensing at home and abroad are very few with the ability of depth perception, which will also be the spectrum. The perceptual technology needs a direction of long-term evolution and progress..4. anti heterosexual cooperative spectrum sensing background noise is composed of ground noise, atmospheric noise, rain noise, artificial noise, interference noise, and the thermal noise of signal detection receiver. The background noise level is often multidimensional in time, location and frequency. In order to make the results of cooperative spectrum sensing more accurate and reliable, the cooperative spectrum sensing technology must have the ability to adapt to the high dynamic changes of the background noise level of the participating cooperation nodes, to counter and weaken the bad results of the nodes themselves to the final cooperation results. The main research results of this paper are as follows: 1. the system model of spectrum sensing is often simply molded into the two element hypothesis, often neglecting the fading channel coefficient, the signal code rate and the interaction between the white noise bandwidth, and the paper. The built system model fully analyzes the correlation between the three, and focuses on the correlation between the samples introduced by the flat slow fading channel, which ensures the accuracy of the system model to meet the robustness requirements of the existing spectrum sensing algorithm. This paper uses the principle of normalized pure transformation from the angle of frequency domain signal processing. A signal detection algorithm based on normalized spectrum is taken into account. According to the asymptotic normality and mutual independence of Fu Liye transform, the algorithm is used to calculate the statistical characteristics of power spectrum, using the intensity of spectral lines in the monitoring band and the ratio of all spectral lines to the intensity of the spectrum. The threshold of the algorithm is only matched with the parameters of the spectrum sensing algorithm. It has nothing to do with the noise variance of the node. It can effectively overcome the influence of the noise uncertainty on the spectrum sensing performance. The fixed signal to noise ratio, the spectrum sensing performance of the algorithm is not affected by the change of noise level. It can be applied to Gauss white noise and flat slow fading channels, and a better spectrum sense can be obtained in a wider range of signal to noise ratio. The existing conventional ultra heterodyne narrowband spectrum sensing technology can not quickly and accurately complete the spectrum sensing of the UWB multiple targets. In this paper, the real-time multi-target parallel spectrum sensing research oriented to discrete frequency band is studied and the multi channel multiphase structure is used to calculate the power spectrum of the ultra wide band.3.. Then the normalized power spectrum of each discrete frequency band is calculated in parallel, and the multiple frequency gaps are detected in the communication bandwidth by cyclic forward and reverse search. In a search cycle, the forward decision is performed first, and the instantaneous power is uneven and the different subband signals are detected. Then the reverse decision is performed to detect positive positive results. The subband signal similar to the comb type signal is missed in the decision, and the parallel spectrum sensing.4. for multiple targets in the band is completed for the differences in the parameters of the participating nodes. In this paper, a more universal cooperative spectrum sensing algorithm is designed. The algorithm overcomes the local normalized spectrum uploading center and overcoming each node. The dynamic changes of noise level in time domain, space and frequency domain are accumulated, and then the test statistics are calculated with equal gain average or optimal weighted average in the fusion center, which can effectively eliminate the influence of high dynamic background noise on the spectrum sensing performance of the signal.5. design and hardware implementation of the spectrum sensor nodes. After completing the networking of the spectrum sensor, a high precision synchronous data acquisition method is designed. Finally, the single point and the cooperative perception measurement performance of the normalized spectral spectrum sensing algorithm and the energy spectrum sensing algorithm are compared.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN925
【相似文献】
相关期刊论文 前10条
1 刘婷婷;王建新;束锋;;合作频谱感知吞吐量和感知时间关系的研究[J];现代雷达;2009年05期
2 常帅;孔凡军;陈娟;郑学强;;协同频谱感知中的认知用户数优化[J];军事通信技术;2010年03期
3 汪一鸣;周刘蕾;;基于追踪定位的认知频谱感知解决方案[J];通信学报;2010年11期
4 岳文静;郑宝玉;孟庆民;崔景伍;解培中;;衰落信道下提高协作频谱感知能力的方法[J];中国科学:信息科学;2011年02期
5 韩勇;陈强;王建新;;合作频谱感知安全技术研究[J];通信技术;2011年06期
6 韩勇;王放;陈强;王建新;;一种信任度模糊分配的合作频谱感知算法[J];信号处理;2011年06期
7 蒋金波;王可人;陈小波;金虎;;频谱切换中基于频谱感知的链路保持概率[J];探测与控制学报;2011年06期
8 刘颖;杨震;;协作频谱感知系统中的结盟技术研究[J];南京邮电大学学报(自然科学版);2012年05期
9 秦臻;薛峰;梁继民;;最大系统效用合作频谱感知优化算法[J];信号处理;2013年02期
10 江晓林;顾学迈;何晨;;基于压缩感知的联合协作频谱感知算法[J];上海交通大学学报;2013年07期
相关会议论文 前10条
1 岳文静;郑宝玉;;一种基于信道可靠性的协作频谱感知算法[A];2009年通信理论与信号处理学术年会论文集[C];2009年
2 张培;孟庆民;朱卫平;;一种可以减少感知时间的频谱感知方法[A];2010年通信理论与信号处理学术年会论文集[C];2010年
3 郝博雅;周辉;孙斌;;基于权值的合作频谱感知算法[A];第六届全国信号和智能信息处理与应用学术会议论文集[C];2012年
4 吴昊;赵杭生;;基于三阶累积量的频谱感知技术研究[A];2009年全国无线电应用与管理学术会议论文集[C];2009年
5 张冰玉;郑宝玉;岳文静;;一种基于串行网络的协作频谱感知方案[A];2010年通信理论与信号处理学术年会论文集[C];2010年
6 冯子木;漆春梅;王军;李乐民;;协同频谱感知算法综述[A];2008年中国西部青年通信学术会议论文集[C];2008年
7 王翊;胡艳军;唐希雯;;一种改进的基于多阈值的协作频谱感知方法[A];2011年通信与信息技术新进展——第八届中国通信学会学术年会论文集[C];2011年
8 郑仕链;何斌;杨伟程;;认知无线电宽带频谱感知试验研究[A];浙江省信号处理学会2011学术年会论文集[C];2011年
9 李佳俊;黄清;孔勇;;基于小波变换的认知无线电宽带频谱感知方法[A];中国电子学会第十六届信息论学术年会论文集[C];2009年
10 杨家胜;刘光斌;程俊仁;;基于压缩采样技术的认知无线电宽带频谱感知方法[A];中国通信学会第六届学术年会论文集(上)[C];2009年
相关博士学位论文 前10条
1 肖淑艳;认知无线电中频谱感知及资源优化分配的研究[D];中国矿业大学;2015年
2 卿浩博;面向无线通信系统的频谱感知理论与技术研究[D];北京邮电大学;2015年
3 杨雪洲;认知中继网络频谱感知与资源分配研究[D];电子科技大学;2014年
4 齐佩汉;稳健精细抗差异性频谱感知技术研究[D];西安电子科技大学;2014年
5 乔晓瑜;基于频谱感知的动态频谱管理研究[D];北京交通大学;2013年
6 李含青;基于压缩感知的宽带频谱感知技术研究[D];哈尔滨工业大学;2014年
7 欧扬;选择性协同频谱感知技术研究[D];苏州大学;2014年
8 刘思杨;下一代无线通信系统中高效传输及频谱感知关键技术的研究[D];北京邮电大学;2009年
9 王悦;认知无线电宽带频谱感知技术研究[D];北京邮电大学;2011年
10 黄俊园;认知无线网络序贯频谱感知研究[D];武汉大学;2014年
相关硕士学位论文 前10条
1 王艳君;认知无线网络中基于多节点的协作频谱感知技术的研究[D];昆明理工大学;2015年
2 谷凯;基于GNU Radio的动态频谱感知及数据传输[D];海南大学;2015年
3 孟晨;基于稀疏组套索的宽频带频谱感知研究[D];燕山大学;2015年
4 魏亮;认知车载网中频谱感知算法仿真研究[D];西南交通大学;2015年
5 周瑞;基于信任度的认知无线电联合频谱感知研究[D];湖南工业大学;2015年
6 钱陆;基于数据并发传输的频谱感知系统的研究[D];北京邮电大学;2014年
7 罗曼;认知无线电协作频谱感知技术的研究[D];哈尔滨工业大学;2015年
8 李然;基于随机矩阵理论的频谱感知算法研究[D];哈尔滨工业大学;2015年
9 张蔚;基于动态压缩采样的宽带频谱感知技术[D];哈尔滨工业大学;2015年
10 宋双;基于序贯检测的认知无线电协作频谱感知算法研究[D];哈尔滨工业大学;2015年
,本文编号:2150552
本文链接:https://www.wllwen.com/kejilunwen/wltx/2150552.html