当前位置:主页 > 科技论文 > 网络通信论文 >

基于稀疏表示和低秩逼近的SAR图像降斑

发布时间:2018-07-31 17:40
【摘要】:合成孔径雷达(Synthetic Aperture Radar,SAR)具有全天候、全天时、高分辨率和穿透力强等特点,因此,SAR在军事方面和民用方面都得到了广泛的应用。但是,由于SAR系统是微波相干成像,SAR图像在获取的过程中受到了斑点噪声的影响。斑点噪声的存在大大降低了SAR图像的分辨率,影响了后续的处理与解译。因此,如何抑制SAR图像中的斑点噪声非常重要。通过分析SAR图像的斑点噪声模型和统计特性,结合稀疏表示理论和低秩逼近理论,本文提出了几种新的SAR图像降斑算法。本文主要包括以下三个方面:1.提出了一种基于聚类和提升字典学习的SAR图像降斑算法。考虑到图像中具有大量相似结构的图像块,利用K均值聚类算法,构造相似图像块集合。为了充分挖掘图像块中包含的纹理细节信息,本章利用主成分分析法,提取各个相似图像块集合的主成分分量,构造相应的PCA字典。以PCA字典为初始字典,采用提升字典学习算法对相似图像块进行稀疏表示与重构,得到最终的降斑结果。2.提出了一种基于结构相似度校正聚类的稀疏表示SAR图像降斑算法。利用方向波变换的多方向性和各向异性,在方向波域对SAR图像进行斑点噪声估计。考虑到相似图像块不仅仅存在于同一尺度的图像中,不同尺度的图像中也包含大量的相似图像块,本章通过对SAR图像进行方向波变换来获取不同尺度的图像块,并采用一种基于结构相似度校正的聚类算法对图像块进行类别划分。最后,利用基于聚类的稀疏表示算法对每类图像块进行稀疏表示和重构,得到最终的降斑结果。3.提出了基于改进的空间自适应迭代奇异值阈值的SAR图像降斑算法。考虑到相似图像块集合具有低秩性的特点,本章利用奇异值分解对SAR图像进行低秩逼近重构,进而达到降斑的目的。在降斑的过程中,为了更好的保留图像中的纹理信息,以原始图像的梯度直方图作为参考,通过约束更新后图像的梯度直方图来达到纹理增强的目的。该方法不仅能够很好的抑制图像中的斑点噪声,且可以很好的保留图像中的点目标和纹理信息。
[Abstract]:Synthetic Aperture Radar (Synthetic Aperture) has been widely used in military and civil fields because it has the characteristics of all-weather, high resolution and strong penetration. However, the SAR system is affected by speckle noise in the acquisition process of microwave coherent imaging. The presence of speckle noise greatly reduces the resolution of SAR images and affects the subsequent processing and interpretation. Therefore, how to suppress speckle noise in SAR images is very important. Based on the analysis of speckle noise model and statistical characteristics of SAR images, combined with sparse representation theory and low rank approximation theory, several new speckle reduction algorithms for SAR images are proposed in this paper. This article mainly includes the following three aspects: 1. A SAR image speckle reduction algorithm based on clustering and lifting dictionary learning is proposed. Considering a large number of similar image blocks in the image, the K-means clustering algorithm is used to construct the set of similar image blocks. In order to fully mine the texture details contained in image blocks, this chapter uses principal component analysis (PCA) to extract the principal components of similar image blocks and construct corresponding PCA dictionaries. Using the PCA dictionary as the initial dictionary, the lifting dictionary learning algorithm is used to sparse represent and reconstruct the similar image blocks, and the final speckle reduction result. 2. A sparse representation SAR image speckle reduction algorithm based on structural similarity correction clustering is proposed. The speckle noise of SAR images is estimated in directional wave domain by using the multi-directivity and anisotropy of directional wave transform. Considering that similar image blocks not only exist in images of the same scale, but also contain a large number of similar image blocks in different scales, this chapter uses directional wave transform to obtain different scales of image blocks. A clustering algorithm based on structural similarity correction is used to classify image blocks. Finally, the sparse representation algorithm based on clustering is used for sparse representation and reconstruction of each image block, and the final speckle reduction result. 3. An improved spatial adaptive iterative singular value threshold algorithm for SAR image speckle reduction is proposed. Considering the low rank characteristic of similar image block set, this chapter uses singular value decomposition to reconstruct SAR image with low rank approximation, so as to achieve the purpose of speckle reduction. In the process of speckle reduction, in order to preserve the texture information of the image better, the gradient histogram of the original image is used as the reference, and the gradient histogram of the updated image is constrained to achieve the purpose of texture enhancement. This method can not only suppress the speckle noise in the image, but also preserve the point target and texture information of the image.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52

【相似文献】

相关期刊论文 前10条

1 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期

2 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期

3 李仲生;李仁发;蔡则苏;赵乘麟;;稀疏表示下的非监督显著对象提取[J];电子学报;2012年06期

4 段菲;章毓晋;;基于多尺度稀疏表示的场景分类[J];计算机应用研究;2012年10期

5 胡正平;李静;白洋;;基于样本-扩展差分模板的联合双稀疏表示人脸识别[J];信号处理;2012年12期

6 姜芳芳;;稀疏表示理论在提高数字图像质量中的应用[J];科技创新导报;2012年36期

7 马莉娜;;增强的两阶段测试样本稀疏表示方法[J];福建电脑;2013年07期

8 尹学忠;樊甫华;;基于字典学习的超宽带信号稀疏表示与降噪方法[J];计算机应用研究;2014年06期

9 张佳宇;彭力;;基于联合动态稀疏表示方法的多图像人脸识别算法[J];江南大学学报(自然科学版);2014年03期

10 陈才扣;喻以明;史俊;;一种快速的基于稀疏表示分类器[J];南京大学学报(自然科学版);2012年01期

相关会议论文 前3条

1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年

2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年

3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年

相关硕士学位论文 前10条

1 张琨雨;在线字典训练及加权差异性稀疏表示的研究[D];大连理工大学;2011年

2 王勇;基于稀疏表示的人脸识别研究[D];五邑大学;2013年

3 李义真;基于词包与稀疏表示的场景分类[D];华南理工大学;2013年

4 孙丽花;基于稀疏表示的人脸识别方法研究[D];河南科技大学;2013年

5 陈天娇;基于分组稀疏和权重稀疏表示的人脸识别研究[D];安徽大学;2014年

6 刘自成;基于稀疏表示的雷达目标角度与距离估计[D];西安电子科技大学;2014年

7 李立;基于稀疏表示的人脸图像识别方法研究[D];南京理工大学;2012年

8 满江月;基于稀疏表示的代价敏感性人脸识别算法研究[D];南京邮电大学;2012年

9 赵广銮;稀疏表示在图像识别中的应用[D];北京邮电大学;2013年

10 罗燕龙;基于局部稀疏表示模型的在线字典学习跟踪算法研究[D];厦门大学;2014年



本文编号:2156346

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2156346.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dbf7d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com