人工鱼群算法的改进及在滨州无线网络规划中的应用
[Abstract]:Artificial fish swarm algorithm is a new kind of swarm intelligence stochastic optimization algorithm, which is a complex intelligent system in essence. It has the advantages of strong robustness, excellent distributed computing mechanism, and easy to combine with other methods. At present, the application of this algorithm has penetrated into many application fields, and developed from solving one-dimensional static optimization problem to solving multi-dimensional dynamic combinatorial optimization problem. Artificial fish swarm algorithm has become a very active research topic in cross-discipline. Wireless network planning needs to determine the base station location, height, transmit power, carrier number, main frequency, antenna azimuth, antenna type, antenna dip angle and common station location, so as to maximize the overall transmission rate. And a better balance between the total transmission rate and the construction cost. This is a typical multi-dimensional dynamic combinatorial optimization problem, so applying artificial fish swarm algorithm to wireless network planning can save a lot of labor cost and improve the effect of planning. In this paper, the basic idea, characteristics and research status of artificial fish swarm algorithm are briefly described, and the significance of improving the algorithm is discussed, and then several methods to improve the algorithm are discussed. Then, the paper discusses the principle of TD-SCDMA wireless network construction, the design process and gives the target of Binzhou wireless network planning. This paper proposes two improvements to the programming problem. One is to improve the method of artificial fish initialization, and to consider the problem of co-location when the artificial fish is initialized. In addition, an adaptive search strategy is proposed to effectively improve the convergence of the algorithm. The artificial fish and food concentration function are designed, and the algorithm framework of AFSA to solve the problem of base station location planning is given, and the simulation experiment is carried out to verify the algorithm. The experimental results show that this scheme can achieve higher network coverage and lower network construction cost, and has good application value. Finally, the improvement effect of artificial fish swarm algorithm and the research direction in the future are briefly summarized. In this paper, the improved method of artificial fish swarm algorithm is deeply studied and tried. The improved artificial fish swarm algorithm has higher searching efficiency and ability to obtain the optimal solution. The research results of this paper have important reference significance for the application of artificial fish swarm algorithm to solve practical optimization problems, and also have a higher reference value for the further study of artificial fish swarm algorithm.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN929.53;TP18
【相似文献】
相关期刊论文 前10条
1 卢雪燕;蔡菲菲;;基于多群竞争的改进人工鱼群算法[J];梧州学院学报;2008年03期
2 曲良东;何登旭;;改进的人工鱼群算法及其在近似求导中的应用[J];微电子学与计算机;2009年05期
3 王联国;洪毅;赵付青;余冬梅;;一种简化的人工鱼群算法[J];小型微型计算机系统;2009年08期
4 王宗利;刘希玉;王文平;;一种改进的人工鱼群算法[J];信息技术与信息化;2010年03期
5 韦修喜;曾海文;周永权;;云人工鱼群算法[J];计算机工程与应用;2010年22期
6 曾蒙迪;;人工鱼群算法的简介及应用[J];信息与电脑(理论版);2011年04期
7 李媛;;基于人工鱼群算法的多元线性回归分析问题处理[J];渤海大学学报(自然科学版);2011年02期
8 陈晓峰;宋杰;;量子人工鱼群算法[J];东北大学学报(自然科学版);2012年12期
9 王波;;基于细胞膜优化的人工鱼群算法研究[J];科技通报;2013年03期
10 王培崇;;人工鱼群算法研究综述[J];中国民航飞行学院学报;2013年04期
相关会议论文 前3条
1 李晓磊;钱积新;;人工鱼群算法:自下而上的寻优模式[A];过程系统工程2001年会论文集[C];2001年
2 徐公林;张铁龙;;人工鱼群算法在电力系统负荷模型参数辨识中的应用[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(中册)[C];2008年
3 刘耀年;姚玉萍;李迎红;刘俊峰;;基于人工鱼群算法RBF神经网络[A];第十届全国电工数学学术年会论文集[C];2005年
相关博士学位论文 前4条
1 王联国;人工鱼群算法及其应用研究[D];兰州理工大学;2009年
2 姚正华;改进人工鱼群智能优化算法及其应用研究[D];中国矿业大学;2016年
3 李晓磊;一种新型的智能优化方法-人工鱼群算法[D];浙江大学;2003年
4 张梅凤;人工鱼群智能优化算法的改进及应用研究[D];大连理工大学;2008年
相关硕士学位论文 前10条
1 陈斐;改进的人工鱼群算法分析与研究[D];西安电子科技大学;2012年
2 王蕾;一种人工萤火虫群优化算法改进的研究[D];青岛理工大学;2015年
3 马尧;基于改进的人工鱼群算法在商旅问题中的应用研究[D];西南交通大学;2015年
4 薛亚娣;改进的人工鱼群算法及其应用研究[D];兰州大学;2015年
5 彭鹏;配电网无功优化和跟踪调节技术研究[D];沈阳理工大学;2015年
6 崔淑慧;三维管路自动敷设算法及干涉校验方法研究[D];哈尔滨工业大学;2015年
7 黄锋;混沌人工鱼群算法及其在水库(群)优化调度中的应用[D];华北电力大学;2015年
8 刘翔;基于改进人工鱼群算法的化工过程优化[D];北京化工大学;2015年
9 喻俊松;基于改进人工鱼群算法无人机航迹规划研究[D];南昌航空大学;2015年
10 陈新;基于人工鱼群算法的柔性作业车间调度研究[D];大连理工大学;2015年
,本文编号:2171455
本文链接:https://www.wllwen.com/kejilunwen/wltx/2171455.html