SAR图像近港舰船目标检测技术研究
[Abstract]:Ship target detection using synthetic Aperture Radar (Synthetic Aperture) images is of great significance for military intelligence acquisition, marine surveillance and fisheries control, and has become a research hotspot in the field of marine remote sensing. In the near port area, ships call in and out frequently, which is of great value for detection. Therefore, it is of great practical significance to study the detection technology of ships near port in SAR images. Aiming at the problem of eliminating land interference and eliminating clutter false alarm in near-port SAR image, this paper uses the method of combining theory with practice to segment the SAR image by using the method of combining theory with practice. The key technologies of ship target detection and identification are studied in detail. Ship detection is essentially a data level screening problem. In view of the SAR images in the near port region, the purpose of ship target detection is mainly achieved by sea and land segmentation, target detection and false alarm discrimination. Land and sea segmentation is to remove land area, target detection is to extract ROI slices from the ocean that may be a ship target, false alarm identification is to eliminate false alarm from the detection result, and finally to output ship target. According to the above ideas, the work is as follows: in the SAR image, the background of the near port area is complex, the wharf and the ship belong to the strong scattering target, and the gray level is close. When the ship is moored near the dock, it appears to be connected with the wharf on the image. Traditional target detection method is difficult to separate ship from wharf correctly. In order to solve this problem, a new ship detection method is proposed in this paper. Based on the segmentation of land and sea, the optical image of the same region is taken as a priori knowledge, and the automatic registration of the SAR image and the optical image is carried out. The optical template of the port is accurately mapped to the SAR image, and then the docking ship is separated from the wharf, and then the global CFAR detection is carried out in the limited ocean area to extract the ship target quickly. Feature-based discriminant method is the most widely used target identification method at present. In this paper, a new discriminant feature, the pixel aggregation feature, is proposed based on the change detection technique for the difference between ship target and clutter false alarm. This feature can quantitatively evaluate the aggregation degree of the pixels of the strong scattering target in the target region after slice segmentation, and then distinguish the real target from the clutter false alarm. In addition, the geometric feature of ship target is also an important distinguishing feature. However, because of SAR coherent imaging mechanism, it is easy to appear "drag" or "cross" on ship target, which makes it difficult to extract geometric feature of ship target. In order to solve this problem, a method of extracting geometric features of ship objects based on elliptic fitting is proposed according to the approximate elliptical feature of ship contour. The experimental results of real SAR data show that the method can overcome the negative effects of "drag" and "cross" to some extent.
【学位授予单位】:国防科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:E925;TN957.52
【相似文献】
相关期刊论文 前10条
1 陈海亮;雷琳;周石琳;;一种抗碎云干扰的海上舰船目标检测方法[J];计算机工程与科学;2010年12期
2 李思纯;杨德森;金莉萍;;基于互双谱与径向基函数神经网络的舰船目标分类(英文)[J];Journal of Marine Science and Application;2009年01期
3 刘松涛,沈同圣,韩艳丽,周晓东;舰船目标海天线提取方法研究[J];激光与红外;2003年01期
4 丛瑜;周伟;于仕财;郭明;;一种对港口影像进行舰船目标提取方法[J];计算机仿真;2014年01期
5 李为民,石志广,付强;舰船目标与舷外干扰的电磁特征分析与鉴别方法研究[J];湖南科技大学学报(自然科学版);2004年04期
6 山鹏;张振华;王晓红;;基于舰船目标的极化SAR改进滤波算法研究[J];遥测遥控;2011年05期
7 王彦情;马雷;田原;;光学遥感图像舰船目标检测与识别综述[J];自动化学报;2011年09期
8 王勇;许小剑;;海上舰船目标的宽带雷达散射特征信号仿真[J];航空学报;2009年02期
9 闫海鹏;于勇;张彬;;基于实测数据的舰船目标前视成像方法研究[J];遥测遥控;2014年04期
10 王玉菊;王学军;岳丽军;莫钦华;;多星对舰船目标联合探测能力研究[J];计算机仿真;2010年07期
相关会议论文 前9条
1 王娟;慈林林;姚康泽;;基于分形的SAR图像舰船目标检测[A];全国第13届计算机辅助设计与图形学(CAD/CG)学术会议论文集[C];2004年
2 徐阳;张雪兰;王娟;;SAR图像舰船目标处理研究综述[A];第十四届全国图象图形学学术会议论文集[C];2008年
3 李文武;李智勇;粟毅;;一种联合灰度和纹理特征的光学图像舰船目标检测方法[A];第十四届全国图象图形学学术会议论文集[C];2008年
4 陈青华;谢晓方;李宗升;郭天杰;;舰船目标红外视景仿真研究[A];第二届红外成像系统仿真测试与评价技术研讨会论文集[C];2008年
5 韩昭颖;种劲松;;极化SAR图像舰船目标检测算法综述[A];中国航空学会信号与信息处理专业全国第八届学术会议论文集[C];2004年
6 张辉;杜春;孙浩;计科峰;;基于CV模型和形状信息的光学遥感舰船目标分割方法[A];2013年中国智能自动化学术会议论文集(第三分册)[C];2013年
7 何友金;李凯永;任建广;;一种改进的基于递归门限分析的红外舰船目标图像分割方法[A];2007年光电探测与制导技术的发展与应用研讨会论文集[C];2007年
8 许曼;牛照东;陈曾平;;一种新的低信噪比红外舰船目标自动检测方法[A];2007年光电探测与制导技术的发展与应用研讨会论文集[C];2007年
9 谢波;李春升;乔凯;于泽;;基于GRECO的舰船目标高频区RCS计算方法在VC++6.0中实现机制[A];第七届全国信息获取与处理学术会议论文集[C];2009年
相关博士学位论文 前4条
1 桂阳;基于机载视觉的无人机自主着舰引导关键技术研究[D];国防科学技术大学;2013年
2 段崇雯;基于SAR成像的海面舰船目标特征参数估计[D];国防科学技术大学;2013年
3 邢相薇;HRWS SAR图像舰船目标监视关键技术研究[D];国防科学技术大学;2014年
4 种劲松;合成孔径雷达图像舰船目标检测算法与应用研究[D];中国科学院研究生院(电子学研究所);2002年
相关硕士学位论文 前10条
1 赵荻;海上舰船目标监测方法研究[D];北京化工大学;2015年
2 赵志;基于星载SAR与AIS综合的舰船目标监视关键技术研究[D];国防科学技术大学;2013年
3 曹芳;基于SAR图像的海面舰船目标检测与鉴别算法研究[D];西安电子科技大学;2014年
4 李俊敏;SAR图像舰船目标检测方法研究[D];西安电子科技大学;2014年
5 常慧杰;爆炸冲击波对舰船目标内部结构毁伤的可视化仿真研究[D];北京理工大学;2016年
6 张羽;基于云计算的舰船目标图像识别[D];华南理工大学;2016年
7 张小强;SAR图像近港舰船目标检测技术研究[D];国防科学技术大学;2014年
8 张胜辉;舰船目标红外中/长波特性分析与检测方法研究[D];国防科学技术大学;2015年
9 夏东W,
本文编号:2172863
本文链接:https://www.wllwen.com/kejilunwen/wltx/2172863.html