谐振式光子带隙光纤陀螺关键技术研究
[Abstract]:Resonator Fiber Optic Gyro (R-FOG) has become a research hotspot for its good development prospects. Its basic principle is to measure the angular velocity of rotation by detecting the frequency difference caused by rotation in the resonator. In R-FOG, narrow-band light source is usually used to obtain good resonance performance, while narrow-band light is used. The high coherence of the source greatly enhances the optical noise in the gyroscope, which seriously affects the performance of the R-FOG. Researchers consider a variety of measures to suppress the related optical noise, but the effect is not very satisfactory. Hollow-core photonic bandgap fiber (HC-PBF) is a new kind of micro-structure fiber. HC-PBF is considered to be used in R-FOG to construct HC-PBF-ROG because it can transmit light in the air core and the air medium has better optical properties than the traditional solid core (Si/SiO2). Thus the related noise can be reduced. Although HC-PBF-ROG has potential advantages in error suppression, there are still some problems: 1. In HC-PBF, the size of optical waveguide has a direct impact on the transmission characteristics. How to optimize the transmission characteristics of the incident light of a particular band in the design of R-FOG optical fiber remains to be studied. 2. The loss of hollow-core optical fiber is larger than that of traditional single-mode optical fiber, which affects the application of hollow-core optical fiber. The loss is mainly caused by the surface mode mechanism. 3. No special HC-PBF research has been carried out for R-FOG. Considering the error factor of R-FOG, the main characteristics of special HC-PBF should include lower Kerr nonlinearity and Rayleigh scattering, as well as good polarization-maintaining or single polarization characteristics. 4. HC-PBF resonator is produced because of cross-talk between two intrinsic polarization states. 5. Discrete backscatter in fiber optic gyroscope system. Aiming at the problems existing in HC-PBF-ROG, a new type of HC-PBF is designed in this paper based on the structure design of HC-PBF. The polarization noise in single polarized HC-PBF resonator and the discrete backscatter in HC-PBF-ROG are studied. The main research contents are as follows: 1. The transmission cut-off characteristics of HC-PBF are studied. The photonic band gap characteristics of HC-PBF are analyzed by plane wave expansion method, and the numerical aperture of hollow fiber is deduced. It is found that there are two extreme values of numerical aperture in HC-PBF due to the limitation of photonic band gap. The duty cycle is found to be an important factor affecting the central wavelength ratio and the wavelength ratio width. Using the transmission cut-off region of HC-PBF, the basic structure of HC-PBF with the lowest limiting loss for 1550nm light source is designed. 2. The surface mode loss of HC-PBF is studied. The full vector finite element method is used to calculate the number of HC-PBF. The strength distribution of the surface mode near the core is obtained. The influence of the cutting radius of the HC-PBF core on the loss of the surface mode is studied. The results show that the introduction of 19-element core holes in the fusion cutting mode can effectively suppress the loss of the surface mode and obtain the optimal core transmission power. 3. The single-mode single-polarization HC-PBF is designed. Based on the idea of resonant coupling, a novel double elliptical auxiliary hole HC-PBF for R-FOG is designed, and the transmission characteristics of each propagation mode are analyzed. The results show that the new fiber has good single-mode and single-polarization characteristics near 1550 nm band. The Kerr nonlinearity and Rayleigh scattering characteristics in-PBF are analyzed. The results show that the new fiber has very low Kerr nonlinearity and Rayleigh scattering loss coefficient compared with the traditional single-mode fiber. 4. The Kerr effect and the Shupe effect in HC-PBF-ROG are comprehensively analyzed, including the generation mechanism and the main suppression measures. The analysis results show that the HC-PBF-ROG constructed by hollow fiber can effectively reduce the influence of Kerr effect on the performance of gyroscope; the error of Shupe effect should be considered in high precision R-FOG, and the hollow fiber with lower Shupe coefficient should be used in HC-PBF-ROG to match the shorter ring resonator with lower fiber length and reasonable winding. The polarization error in a single polarized HC-PBF resonator is studied. The transmission matrix of a single polarized HC-PBF resonator is established. Based on the transfer matrix, the polarization noise model of a single polarized HC-PBF resonator is established by using Jones matrix method, and the single polarized HC-PBF resonator is theoretically resonated. The polarization noise of the cavity is analyzed, and the results show that the single polarization state HC-PBF resonator can effectively suppress the polarization fluctuation error. 6. Discrete backscattering noise in HC-PBF-ROG is studied. Rayleigh backscattering and discrete backscattering in HC-PBF-ROG are analyzed. The discrete backscattering is classified and the complete discrete backscattering is established. A method of adding phase modulation to the suspension end of detector coupler is proposed. The influence of modulation waveform on discrete backscatter is analyzed. By comparison and analysis, the discrete backscatter noise can be effectively suppressed theoretically by setting reasonable modulation coefficient.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN96
【相似文献】
相关期刊论文 前10条
1 田振;谭晓玲;耿优福;王鹏;姚建铨;;四方格子全固光子带隙光纤带隙特性研究[J];激光杂志;2009年05期
2 从征;晶体光子带隙已接近现实[J];激光与光电子学进展;1999年10期
3 方云团,沈廷根,谭锡林;二维正方复式晶格的完全光子带隙[J];激光技术;2004年04期
4 任坤;冯志芳;任晓斌;;可调谐光子带隙晶体的研究进展[J];量子电子学报;2008年06期
5 庞云波,高葆新;多层结构的光子带隙特性[J];电子学报;2002年09期
6 刘剑飞;张伟刚;开桂云;王志;张春书;袁树忠;董孝义;;可调光子带隙光纤的泄漏损耗特性研究(英文)[J];光子学报;2007年10期
7 栗岩锋;胡晓X;王爱民;;基于高折射率断环结构的全固光子带隙光纤的设计[J];物理学报;2011年06期
8 张斌;侯静;姜宗福;;全固态光子带隙光纤第1带隙内模场分布特性[J];强激光与粒子束;2011年01期
9 宋健,张玉,梁昌洪;共形FDTD分析圆形光子带隙微带结构[J];西安电子科技大学学报;2004年05期
10 倪正华,刘兆伦,刘晓东,李曙光,周桂耀,侯蓝田;光子带隙光纤的奇异特性和应用[J];激光与光电子学进展;2004年11期
相关会议论文 前10条
1 陈鸿;;光子带隙材料及其应用[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
2 张援农;赵正予;黄天锡;;准周期结构的分层介质的光子带隙特性[A];2005'全国微波毫米波会议论文集(第二册)[C];2006年
3 张援农;赵正予;李晓蓉;;具有分形结构的分层介质的光子带隙特性[A];2003'全国微波毫米波会议论文集[C];2003年
4 杨红;吴伟;邹旭;吴金辉;;一维冷原子晶格中基于平衡四波混频的双色光子带隙[A];第十六届全国量子光学学术报告会报告摘要集[C];2014年
5 黄爱琴;郑继红;徐邦联;蒋妍梦;唐平玉;庄松林;;可调谐液晶三角格子光子晶体结构参数的变化对光子带隙的影响[A];中国光学学会2010年光学大会论文集[C];2010年
6 何晓东;刘星元;刘大力;于荣金;;ZrO_2/SiO_2光子带隙材料的透射特性研究[A];全国第十次光纤通信暨第十一届集成光学学术会议(OFCIO’2001)论文集[C];2001年
7 王志;;基于光子带隙光纤长周期光栅的模式干涉仪[A];中国光学学会2011年学术大会摘要集[C];2011年
8 雷继兆;梁昌洪;丁伟;张玉;;并行FDTD方法分析光子带隙微带结构[A];2007年全国微波毫米波会议论文集(上册)[C];2007年
9 杨国锋;陈鹤鸣;;低损耗光子带隙光纤的数值研究[A];全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C];2005年
10 杨远洪;张惟叙;;光纤陀螺及其应用[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
相关重要报纸文章 前10条
1 上海交通大学 姜淳;光子带隙光纤(下)[N];通信产业报;2007年
2 记者 马丽元 通讯员 王丽梅;国内首条光纤陀螺生产线竣工[N];中国航空报;2011年
3 王红霞;光纤陀螺生产线在宝成开工建设[N];中国航空报;2009年
4 赵晓文 邓顺英;红峰厂 光纤陀螺为高铁安全护航[N];中国航天报;2011年
5 记者 赵碧君 刘涛;长盈通光电布局光纤陀螺千亿市场[N];上海证券报;2014年
6 记者 李剑军 实习生 周疏密;光谷光纤陀螺技术国内领先[N];湖北日报;2014年
7 记者 马丽元 通讯员 王丽梅;大力倡导开创型创新[N];中国航空报;2011年
8 赵永新 王健;挫折是人生的财富[N];人民日报;2012年
9 王红霞;空装副部长张伟到中航工业宝成考察[N];中国航空报;2010年
10 李红梅 王红霞;产学研合作创新引领中航工业宝成跨越发展[N];科技日报;2011年
相关博士学位论文 前10条
1 宋鸿儒;谐振式光子带隙光纤陀螺关键技术研究[D];哈尔滨工程大学;2014年
2 王齐;光子带隙与银纳米微粒局域场效应协同增强稀土离子下转换发光的研究[D];昆明理工大学;2016年
3 刘震东;光子带隙调制光物理过程的研究[D];清华大学;2013年
4 张涵;光子带隙热库中原子相干性质的理论研究[D];吉林大学;2008年
5 张珂;光子带隙热库中原子的发光特性研究[D];吉林大学;2008年
6 党淑雯;光纤陀螺的信号分析及滤波技术研究[D];上海交通大学;2010年
7 陈世同;高精度光纤陀螺建模及信号处理技术研究[D];哈尔滨工程大学;2009年
8 张学楠;环形谐振器中的可调控干涉特性研究[D];哈尔滨工业大学;2015年
9 严昱超;谐振式光纤陀螺偏振噪声研究[D];浙江大学;2016年
10 崔慧敏;基于神经网络的光纤陀螺误差补偿和平台稳定控制技术研究[D];中国科学院长春光学精密机械与物理研究所;2017年
相关硕士学位论文 前10条
1 刘铭华;基于空芯光子带隙光纤的全光纤甲烷检测系统研究[D];燕山大学;2015年
2 王四琴;光子带隙与贵金属协同调控稀土离子下转换发光性质的研究[D];昆明理工大学;2016年
3 于淼;电磁诱导双光子和三光子带隙的产生和控制[D];吉林大学;2012年
4 王盼晓;准三维光子带隙波导的理论与实验研究[D];清华大学;2006年
5 邵珠峰;面向大数据的传输光纤设计和分析[D];上海交通大学;2014年
6 王晓畅;一维原子晶格中基于平衡四波混频的双色光子带隙[D];吉林大学;2014年
7 张靓;二能级系统电磁感应光子带隙理论与实验研究[D];吉林大学;2010年
8 李大为;铯原子中驻波场作用下可控光子带隙的研究[D];吉林大学;2009年
9 凌冬;光纤陀螺实时去噪技术及其测试分析平台的实现研究[D];南京航空航天大学;2008年
10 余慧;光纤陀螺动态特性的测试与分析[D];哈尔滨工程大学;2009年
,本文编号:2177018
本文链接:https://www.wllwen.com/kejilunwen/wltx/2177018.html