基于CSI测距的轻量级指纹室内定位技术研究
[Abstract]:With the popularity of Wi-Fi and mobile devices, indoor positioning based on Wi-Fi has attracted more and more researchers'attention. Received Signal Intensity Indicator (RSSI), as a mainstream scheme, is often used in ranging-based positioning systems and fingerprint positioning systems. In recent years, devices (such as Intel 5300 wireless adapters) have supported the acquisition of channel states in the physical layer. Information (CSI). CSI is an indicator that can characterize signal characteristics with finer granularity than RSSI. It opens up a new space for Wi-Fi-based indoor positioning technology and attracts the attention of many researchers. This paper studies indoor positioning based on CSI. The main contributions are as follows: 1. A lightweight fingerprint positioning scheme based on CSI ranging, RanLi Fi (RanLi Fi) Range-based Lightweight Fingerprint) scheme, including pre-processing phase, offline phase and online phase. The pre-processing phase will be carried out before offline and online phase, used to process stable data, offline phase to build indoor fingerprint map, online phase to complete ranging and fingerprint matching and get the location of the target. A novel ring sampling point strategy is proposed, which combines the ranging-based localization method with the fingerprint-based scheme. The fingerprint scheme compensates for the low precision of the ranging scheme and reduces the cost of fingerprint matching in the fingerprint scheme. Then the fingerprint matching range is reduced to a loop with the wireless access point as the center and the radius closest to the D value. Finally, the position of the fingerprint with the highest matching degree is taken as the target position. 2. Based on Papanico coefficient method, a B-AoE (Bhattacharyya based Average of Energy of Interest) fingerprint is proposed. The B-AoE fingerprint can satisfy the requirement that the same location is sufficiently similar and different locations are easy to distinguish. In the off-line and on-line phases of RanLiFi, the obtained CSI data are generated into B-AoE fingerprint.3. In order to accurately measure the distance, a base is proposed. The adaptive propagation model of energy of interest is called S-EoI (Self-adaptive and Energy of Interest based) model. It is found that the line-of-sight path and non-line-of-sight path signals can not be separated accurately under the condition of 20 MHz bandwidth. Moreover, the attenuation degree of each signal transmission is different even in the same indoor environment. Based on this, this paper defines an energy of interest which is stable and can reflect the changes of the environment, and gives an adaptive method to calculate the path loss coefficient of each signal transmission. The biggest advantage of S-EoI model is that it does not need to train the parameters of different indoor environments and adaptively uses the path loss coefficient. The system includes data acquisition module, pre-processing module, fingerprint map construction module and positioning navigation module, and supports fault-tolerant mechanism and feedback mechanism to ensure the practicability and stability of the system. The data acquisition module uses Intel 5300 wireless network card to acquire the original CSI data, preprocessing module, fingerprint map construction module and positioning and navigation module respectively implement the methods in the pre-processing stage, off-line stage and online stage of Ran Li Fi scheme. The performance of RanLiFi positioning system is evaluated from various angles. The experimental results show that the proposed S-Eo I ranging scheme has an average error of 1.7 meters, and the B-AoE fingerprint scheme can be correctly positioned in 98% of the cases. With the support of fault-tolerant mechanism, RanLi-Fi system can achieve an average positioning accuracy of 0.8 meters, and its time performance reaches second level.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN92
【相似文献】
相关期刊论文 前10条
1 汪家铬;;CSI机器故障诊断专家系统及其应用[J];川化;1994年03期
2 汪家铭;CSI机器故障诊断专家系统及其应用[J];自动化与仪表;1994年04期
3 汪家铭;CSI机器故障诊断专家系统及其应用[J];设备管理与维修;1994年08期
4 汪家铭;CSI全自动机器故障诊断专家系统简介[J];中国设备管理;1994年05期
5 汪家铭;CSI机器故障诊断专家系统及其应用[J];大氮肥;1994年04期
6 ;欧学者研发可完全取代灯泡的高CSI白光LED[J];电源世界;2007年12期
7 赵炯;国外网络产品新动向——CSI(计算机安全公司)的Cybex KVM交换机[J];计算机与数字工程;2000年01期
8 李莉;王珂;韩力;;CSI对MIMO系统容量影响的仿真与分析[J];武汉理工大学学报(信息与管理工程版);2007年07期
9 王志刚;单利民;尚雷;谢文杰;秦纲;刘春秀;俞伯祥;董明义;蔡啸;周莉;夏小米;赖元芬;王曼;孙丽君;方建;何苗;胡涛;吕军光;;CsI(T1)晶体量能器中硅光二极管的核计数器效应研究[J];高能物理与核物理;2006年09期
10 何仲;陈盛云;;CSI对天线相关MIMO系统容量影响的仿真分析[J];西安邮电学院学报;2009年03期
相关会议论文 前3条
1 李晓薇;;可持续性管理在GxP系统中的应用[A];天津市电视技术研究会2014年年会论文集[C];2014年
2 BESⅢ EMC组;;BESⅢ量能器CsI(Tl)晶体读出用硅光二极管的检测[A];第十三届全国核电子学与核探测技术学术年会论文集(上册)[C];2006年
3 蔡啸;尚雷;边渐明;陈文君;董明义;方建;赖元芬;李光义;刘春秀;刘万金;穆礼光;秦刚;单利民;孙丽君;王曼;王志刚;夏小米;谢文杰;严亮;俞伯祥;袁诚;张宏杰;赵正印;张振华;周莉;胡涛;吕军光;;CsI(Tl)晶体量能器探测单元宇宙射线实验的建立与调试[A];第十三届全国核电子学与核探测技术学术年会论文集(上册)[C];2006年
相关重要报纸文章 前7条
1 高阿娜;CSI阿特斯——追逐着太阳奔跑[N];中国现代企业报;2007年
2 汪沁;启动空运CSI[N];国际经贸消息;2002年
3 本报记者 俞凌琳;荣威挤进CSI背后[N];21世纪经济报道;2009年
4 本报记者 邢锐;广汽本田再次问鼎CSI[N];中国经济时报;2011年
5 王爽;济南将推出首批CSI住宅[N];中国建材报;2009年
6 苏新;CSI阿特斯在美国纳斯达克上市[N];中国高新技术产业导报;2006年
7 本报记者 李小石;电价上涨 CSI阿特斯瞄准太阳能发展新契机[N];机电商报;2008年
相关硕士学位论文 前8条
1 胡俊鹏;CsI(Na)晶体的辐射发光特性及探测性能研究[D];华北电力大学;2015年
2 王凯;基于CSI测距的轻量级指纹室内定位技术研究[D];西安电子科技大学;2014年
3 杨忠现;2D-CSI定量分析遗忘型轻度认知功能障碍患者颅内代谢物的初步研究[D];汕头大学;2011年
4 曾庆展;载波聚合下CSI反馈及分量载波间干扰的研究[D];电子科技大学;2012年
5 孙丽梅;CSI体系保障性住房的产业化建设理论研究[D];大连理工大学;2014年
6 温可佳;CSI中无动词小句的研究[D];东北林业大学;2010年
7 熊理锋;瑞芬太尼复合异丙酚麻醉中BIS与CSI两种麻醉深度指标的比较及对记忆的评价[D];中南大学;2007年
8 庄宗良;基于CSI的中压同步电动机变频起动及调速控制[D];哈尔滨工业大学;2012年
,本文编号:2180757
本文链接:https://www.wllwen.com/kejilunwen/wltx/2180757.html