基于全光量化的光谱压缩方法研究
[Abstract]:With the development of science and technology, digital signal processing exists in all aspects of our life because of its many advantages. In communication and military, digital signal processing technology has completely changed the communication and radar system of the old era, made it highly digital, and greatly improved the ability of signal transmission and processing. With the higher expectation of digital signal processing, the bandwidth and sampling rate of ADC (ADC) are also higher. Traditional electronic ADC can not meet the requirements of high speed and high precision analog-to-digital converters because of its "electronic bottleneck". Therefore, optical ADC, as an effective method to break through the bottleneck of electronic ADC, has been paid more and more attention in recent years. This paper focuses on all-optical quantization based on soliton self-frequency shift effect. A new spectral compression method, which is based on the (NOLM) structure of nonlinear fiber loop mirror, is proposed to improve the precision of all-optical quantization. The feasibility of this method is verified by simulation and experiment. The main contents of the thesis are as follows: 1. The development and application of optical ADC are introduced systematically. The discovery of soliton self-frequency shift and its development in all-optical quantization are summarized. The generalized nonlinear Schrodinger equation, which is suitable for optical pulse propagation in optical fiber, is derived and studied by Maxwell equations. The numerical method of solving generalized nonlinear Schrodinger equation, the fractional Fourier method, is also discussed. Some nonlinear effects of pulse propagation in optical fiber are introduced. The mechanism of self-frequency shift of soliton and the influencing factors of frequency shift are analyzed. According to the basic principle of NOLM, the spectral compression method based on NOLM is proposed, and the numerical analysis and experimental study are carried out. The numerical simulation results show that: NOLM can compress the non-chirped hyperbolic cut pulse and reduce the compressed spectral sideband (or pedestal) by changing the structure parameters, so that the non-chirped hyperbolic cut pulse of 300fs can be compressed by this structure parameter. The simulation results show that the side band energy ratio is 9.39% and the spectrum width is 1.6nm. In the experiment, the sub-picosecond pulse produced by NPR passive mode-locked fiber laser is compressed. The spectrum width of 1.52nm and the compression ratio of 6.53 are obtained by considering the side band energy ratio and compression ratio. The second order spectral compression of dispersion-increasing fiber (DIF) and anomalous dispersion high nonlinear fiber (HNLF) series NOLM are studied numerically. The simulation results show that the maximum compression ratio of 10.93 can be obtained when the soliton number N is 0.5 ~ (11) ~ (1.4) when the NOLM is connected to different types of DIF, and when the NOLM is connected to the anomalous dispersion high nonlinear fiber, when the NOLM is HNLF, the maximum compression ratio can be obtained. Increase the compression ratio from 7. 33 to 11. 9. A compression ratio of 46.67 can be obtained when NOLM is a dispersion-shifted fiber.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7
【相似文献】
相关期刊论文 前10条
1 陈颖;张书仙;;基于分裂超连续光谱的全光量化方案研究[J];光通信技术;2010年02期
2 赵永鹏,叶培大;光网络中的全光再生[J];半导体光电;2001年03期
3 李利平;王博;;一种新型全光因特网方案设计及性能仿真[J];光通信技术;2014年01期
4 纪越峰,柏琳,徐大雄;全光地址识别机理的研究[J];光学学报;2004年01期
5 沈鑫;邱昆;;一种新型的全光再生节点[J];电子科技大学学报;2006年06期
6 李将;邓大鹏;钱凤臣;曹东东;;一种全光3R再生方案的研究[J];光通信技术;2013年03期
7 刘汝斌;于晋龙;王菊;孟天晖;王文睿;苗旺;孙斌;杨恩泽;;全光3R系统再生能力的测试方法研究[J];光电子.激光;2013年07期
8 刘颖;王荣;;全光交换关键技术—全光标签交换[J];山西电子技术;2008年02期
9 王菊;于晋龙;罗俊;王文睿;韩丙辰;吴波;郭精忠;杨恩泽;;基于信号抽运的光纤光参量放大的全光3R再生系统[J];物理学报;2011年09期
10 杨祥林;;全光接力通信技术[J];东南大学学报;1992年03期
相关会议论文 前5条
1 陈颖;陈向宁;;基于光纤延迟线的全光量化编码方案研究[A];2009年先进光学技术及其应用研讨会论文集(下册)[C];2009年
2 周云峰;伍剑;林金桐;;利用TOAD实现全光逻辑操作的实验研究[A];第九届全国青年通信学术会议论文集[C];2004年
3 王凌;张民;赵永鹏;叶培大;;新型基于SOA-MZI的高速全光非门及其性能分析[A];全国第十一次光纤通信暨第十二届集成光学学术会议(OFCIO’2003)论文集[C];2003年
4 牛长流;张民;叶培大;;基于SOA-MZI的高速全光逻辑门设计[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(上册)[C];2007年
5 周敏娟;孙军强;;基于非线性光纤环镜的40-Gb/s全光异或门[A];全国第十三次光纤通信暨第十四届集成光学学术会议论文集[C];2007年
相关硕士学位论文 前10条
1 王同刚;全光正交频分复用技术的研究[D];西安电子科技大学;2011年
2 安俊鸽;全光2R再生器的功率转移特性研究[D];电子科技大学;2013年
3 余欢;全光正交频分复用系统解复用器的研究与设计[D];华中科技大学;2013年
4 李胜男;高精度全光量化方法研究[D];电子科技大学;2012年
5 白石磊;基于交叉增益调制效应的全光逻辑器件研究[D];南京邮电大学;2014年
6 陈祥;全光缓存关键技术的研究[D];华中科技大学;2007年
7 段嫔香;光纤通信中的全光采样和信号再生技术研究[D];电子科技大学;2010年
8 李芳;基于高非线性光纤中四波混频效应的全光逻辑门研究[D];浙江工业大学;2013年
9 杨帆;基于全光量化的光谱压缩方法研究[D];电子科技大学;2014年
10 梁俊强;基于高非线性光纤中的非线性效应产生全光随机数[D];太原理工大学;2013年
,本文编号:2223513
本文链接:https://www.wllwen.com/kejilunwen/wltx/2223513.html