多摄像头非刚体目标检测与空间定位系统
[Abstract]:With the rapid popularization of video surveillance system, computer vision is gradually becoming known to the public, especially in the field of computer vision moving object detection and location technology, in recent years, more and more attention has been paid to, has been widely used in security surveillance, intrusion detection, driverless vehicles and other fields. Traditional video surveillance system needs more. Artificial participation can not cope with the increasingly complex and changeable monitoring environment. However, intelligent video surveillance system based on video images does not need or only need a small amount of manual participation. It can simultaneously monitor multiple scenes. It can analyze in a very short time, discover abnormal behavior in monitoring and give real-time alarm. In this paper, the core target detection technology in frequency monitoring is deeply studied, and the main target detection algorithms are analyzed. Aiming at the specific application scenarios, a target detection system is constructed by using a variety of target detection algorithms, and a target location system is constructed by using the system on multiple cameras. The main contents of this paper are as follows: 1. A multi-target detection method based on inter-frame difference and similarity checking is proposed. The difference image is obtained by inter-frame difference method, and the object contour is obtained by morphological processing. In order to solve the problem of target splitting caused by non-rigid object deformation, a variety of methods are used to merge. The multi-target can be identified quickly by calculating the region correlation. The rough position of the target in the image is determined, and the operation efficiency is high, which can provide a reference for the accurate detection of the target. 2. The target detection algorithm based on deformable component model is studied. On the basis of the rough position of the target obtained by the difference algorithm, the precise position of the specified type of target can be obtained by using this algorithm. The shape component model is a detection algorithm based on target feature statistical learning, which uses HOG descriptors as model features and has good geometric and optical transformation invariance. At the same time, due to the introduction of deformation model, this method has excellent robustness for non-rigid deformation of objects, especially for pedestrians and other non-rigid deformation. 3. The application scene of object detection is studied. Based on the two-point forward rendezvous, a multi-path rendezvous algorithm based on joint probability distribution is proposed. The estimation value of object position in space is obtained by using probability model according to the detection result of multiple cameras. This method is more than the traditional method. The reliability and accuracy of the method of using two paths to intersect and then take the geometric center are greatly improved. The minimum theoretical error of the positioning system in the horizontal and vertical directions is analyzed by mathematical model, and the theoretical accuracy limit of the positioning system in the implementation environment is obtained.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP391.41;TN948.6
【相似文献】
相关期刊论文 前10条
1 李延军;黄国勇;;基于帧间差分的火灾预警研究[J];微计算机应用;2010年10期
2 樊晓亮;杨晋吉;;基于帧间差分的背景提取与更新算法[J];计算机工程;2011年22期
3 武怀金;王武江;;基于帧间差分方法的运动目标检测[J];黑龙江科技信息;2012年10期
4 张丹丹;娄焕;;帧间差分法中阈值的选择[J];科技信息;2013年34期
5 张秋仙;;帧间差分法与平均背景法在运动检测中应用的研究[J];企业科技与发展;2010年18期
6 薛丽霞;罗艳丽;王佐成;;基于帧间差分的自适应运动目标检测方法[J];计算机应用研究;2011年04期
7 廖马腾;李全;;基于System Generator的帧间差分运动目标检测算法仿真[J];电子质量;2013年04期
8 崔星;闫清东;;基于帧间差分方法的道路车辆检测系统[J];微计算机信息;2007年10期
9 杨庆华;李薇;舒兰英;贺超;何先波;;基于双高斯平均似然度和帧间差分的人脸视频图像肤色提取[J];数据采集与处理;2013年01期
10 李惠松;王小铭;张玉霞;;一种基于帧间差分与时空相关性分析的运动目标检测算法[J];计算机与数字工程;2007年12期
相关会议论文 前4条
1 金黎明;周晓光;苏志远;;一种基于帧间差分背景重建的动目标检测算法[A];2009年先进光学技术及其应用研讨会论文集(上册)[C];2009年
2 熊卫华;向磊;李俊峰;赵新龙;;背景减除与帧间差分相结合的运动目标检测方法[A];中国自动化学会控制理论专业委员会A卷[C];2011年
3 王静静;林明秀;魏颖;;基于灰度相关的帧间差分和背景差分相融合的实时目标检测[A];2009年中国智能自动化会议论文集(第六分册)[中南大学学报(增刊)][C];2009年
4 林佳乙;于哲舟;张健;马安娜;楚叶峰;;基于背景差分法和帧间差分法的视频运动检测[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅲ)[C];2008年
相关硕士学位论文 前6条
1 谢松;多摄像头非刚体目标检测与空间定位系统[D];电子科技大学;2015年
2 冯尧文;基于帧间差分的运动目标稳健检测方法[D];哈尔滨工业大学;2011年
3 胡敬舒;基于帧间差分的运动目标检测[D];哈尔滨工程大学;2013年
4 刘静;智能视频监控关键技术研究[D];北京化工大学;2012年
5 曾旭;基于DM6446的智能视频监控系统开发[D];杭州电子科技大学;2012年
6 陈文鼎;基于嵌入式系统的液滴流速监测设计与实现[D];南京理工大学;2013年
,本文编号:2250147
本文链接:https://www.wllwen.com/kejilunwen/wltx/2250147.html