量子信息隐藏协议研究
[Abstract]:With the rapid development of quantum information technology, the outstanding research results of quantum secure communication theory and implementation technology have brought revolutionary impact to the existing information science research and aroused people's great concern. Quantum information hiding uses quantum states as the carriers of information transmission, uses quantum information and quantum computation to hide, extract and transmit quantum or classical secret messages. Its concealment and security can be obtained from the basic principles of quantum mechanics. Quantum information hiding is a new research direction combining information hiding with quantum information science. It is also a new bright spot in information security technology research. It has very important research value and broad application prospects.
Based on the theory and characteristics of quantum mechanics and the quintessence of classical information hiding theory and thought method, this paper studies the key basic theory of quantum information hiding protocol, quantum covert channel protocol and quantum steganography association by using quantum information science method. Quantum covert channel protocol and quantum steganography protocol are two important branches of quantum information hiding protocol. The former establishes a covert channel to transmit secret messages in the communication channels of other quantum secure communication protocols, and the latter embeds secret messages into other seemingly unrelated quantum carriers. It can only be read by the intended receiver. The specific research work in this paper is as follows:
(1) The key basic theories of quantum information hiding are studied and some achievements are obtained. Firstly, the concept of quantum hidden channel is proposed, which is formally introduced into the field of quantum information. Secondly, the performance analysis part of each quantum information hiding protocol in this paper studies the new connotation of the performance evaluation index in the field of quantum information. In particular, in order to accurately reflect the relationship between the consumption of quantum resources and the embedded capacity, a quantitative evaluation index of the embedded capacity, namely the covert communication efficiency, is proposed. Secondly, the quantum direct communication protocol which is the basic support for quantum information hiding is studied. Based on Grover search algorithm, a deterministic secure quantum communication (DSQC) protocol and a quantum secure direct communication (QSDC) protocol are designed.
(2) This paper analyzes the reasons for establishing covert channel in QSDC channel, and designs a quantum covert channel protocol based on arbitrary QSDC channel. Firstly, by analyzing the role and characteristics of unitary operation in QSDC protocol, it points out the reasons for establishing covert channel in QSDC channel. Because of the function of information and the universality and confidentiality independent of the quantum state, we can use the unitary operation used in the QSDC channel to establish a covert channel that only the two parties know to transmit secret messages. Secondly, we design a quantum covert channel protocol based on arbitrary QSDC protocol. Finally, a quantum covert channel protocol for transmitting quantum information is proposed based on quantum teleportation protocol. (3) With the help of the formula of entanglement swapping of quantum states, quantum covert messages based on entanglement swapping of quantum states are studied in depth. On the one hand, a simple secret message encoding rule is designed based on the relation between input state and output state of generalized Bell state entanglement swapping, and a quantum covert channel protocol without any auxiliary particles is proposed. On the other hand, quantum covert based on_-type entanglement swapping proposed by Qu et al is pointed out. In order to overcome the shortcomings of the channel protocol, an improved scheme is proposed. It is difficult to encode a 4-bit secret message at one time because there are 8 sets of possible outputs of any_-type entanglement switching and 16 different_-type entanglement switching. An improved quantum covert channel protocol is proposed based on the relation between the input state and the output state. Compared with the previous covert channel protocols based on entanglement swapping of quantum states, this kind of protocol not only has lower computational complexity, but also does not consume any auxiliary quantum states.
(4) To further improve the efficiency of covert communication, an efficient quantum covert channel protocol based on the direct product states of two-particle orthogonal quantum states is proposed. Firstly, based on the direct product states of two Bell states, a secret message encoding rule with low computational complexity is proposed, and a universal and efficient quantum covert protocol is designed. In order to further improve the embedded capacity and the efficiency of covert communication, an efficient quantum covert channel protocol based on the direct product states of two-particle orthogonal quantum states is proposed. Low computational complexity. When the number of quantum states in the initial state sequence of QSDC channel is not too large, these protocols have large embedded capacity and high covert communication efficiency.
(5) The defects of a GHZ4-based quantum steganography protocol (AMH protocol) coding rule are pointed out, the reasons are analyzed, and an improved scheme is given. The eight sets of unitary operations given in AMH protocol can only transform GHZ4 states into six rather than eight different quantum states. Therefore, any one of the unitary operations can not accurately encode one. In order to solve this problem, eight sets of unitary operations, which can transform GHZ4 state into eight different quantum states, are presented. Each set of unitary operations can encode a 3-bit secret message successfully.
【学位授予单位】:北京邮电大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:O413.1;TN918
【相似文献】
相关期刊论文 前10条
1 ;中国科学院量子信息重点实验室[J];物理;2008年08期
2 ;《量子信息哲学》出版[J];自然辩证法研究;2012年10期
3 郭光灿;量子信息现状与未来[J];量子光学学报;2000年03期
4 段艳平;量子信息与测量教育部重点实验室[J];北京大学学报(自然科学版);2001年04期
5 郭光灿;量子信息技术[J];中国科学院院刊;2002年05期
6 严肃;量子信息技术的新进展[J];中南民族大学学报(自然科学版);2002年04期
7 郝宁湘;量子信息论及其哲学思考[J];科技导报;2003年06期
8 ;量子信息名词[J];物理;2005年11期
9 吴国林;;量子信息哲学正在兴起[J];哲学动态;2006年10期
10 古卫芳;;从量子信息的产生浅析科学的发现问题[J];沧桑;2007年02期
相关会议论文 前10条
1 方锦清;毕桥;;一种量子信息网络及其若干特性[A];第三届全国复杂动态网络学术论坛论文集[C];2006年
2 郭国平;;表面等离子体等纳米结构在量子信息中的运用研究[A];第十二届全国量子光学学术会议论文摘要集[C];2006年
3 陈宗海;张陈斌;董道毅;;量子信息系统仿真[A];'2003系统仿真技术及其应用学术交流会论文集[C];2003年
4 郭光灿;;量子信息的若干问题[A];光子科技创新与产业化——长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集[C];2006年
5 靳静;赵庆柏;宋鹤山;唐一源;;脑高级功能的量子信息模型的设想[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年
6 孙昌璞;吴令安;;“纠缠态与量子信息”研讨会[A];Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
7 周静;张睿lm;雷煜卿;卢利峰;卢锟;;日本量子信息通信技术研究现状及发展趋势[A];2012年电力通信管理暨智能电网通信技术论坛论文集[C];2013年
8 杨晓冬;王安民;马小三;牛万青;尤浩;徐枫;;利用核磁共振产生无耦合自旋之间的纠缠[A];第十一届全国量子光学学术会议论文摘要集[C];2004年
9 杜江峰;;基于掺杂金刚石体系的单自旋量子调控[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
10 吴令安;;《物理学名词》修订版增添量子信息新词[A];第十六届全国量子光学学术报告会报告摘要集[C];2014年
相关重要报纸文章 前10条
1 记者 胡其峰;量子信息技术应用前景广阔[N];光明日报;2012年
2 记者 张强;专家学者在北京研讨量子信息[N];科技日报;2007年
3 记者 吴长锋;量子信息:开启未来时代的密钥[N];科技日报;2007年
4 彭默馨 崔风鸣;量子信息技术重新涂抹战神的面孔[N];学习时报;2013年
5 记者 桂运安;中科大量子信息研究取得新进展[N];安徽日报;2014年
6 王炳尧;第二届量子信息研讨会召开[N];科技日报;2004年
7 ;日本开展“量子信息通信”研究[N];人民邮电;2000年
8 本报记者 张晔 通讯员 张前;量子信息技术离我们还有多远[N];科技日报;2009年
9 记者 华凌;观察量子信息新方法可及时纠错量子状态[N];科技日报;2013年
10 中国科技大学理学院副院长 郭光灿;量子信息技术[N];大众科技报;2001年
相关博士学位论文 前10条
1 瞿治国;量子信息隐藏协议设计与分析的研究[D];北京邮电大学;2011年
2 王雅红;量子信息远程传输的理论研究[D];大连理工大学;2008年
3 陆晓铭;开放系统中的量子信息[D];浙江大学;2011年
4 黄婷;利用腔QED技术进行的量子信息过程[D];中国科学技术大学;2005年
5 於亚飞;多体纠缠在量子信息中的应用[D];中国科学院研究生院(武汉物理与数学研究所);2003年
6 曹原;基于自由空间信道的量子信息实验研究[D];中国科学技术大学;2012年
7 吴青林;高速电子学及其在量子信息技术中的应用[D];中国科学技术大学;2008年
8 徐淑奖;量子信息隐藏协议研究[D];北京邮电大学;2014年
9 徐枫;量子模拟和纠缠证据的相关研究[D];中国科学技术大学;2006年
10 任林源;量子信息的克隆、删除、分辨与概率隐形传态[D];陕西师范大学;2008年
相关硕士学位论文 前10条
1 吴韬;量子信息在腔QED中的传送[D];安徽大学;2007年
2 古卫芳;关于量子信息思想发展史的研究[D];山西大学;2007年
3 陆远;对量子信息涵义的哲学思考[D];山西大学;2012年
4 单传家;腔QED中若干量子信息问题的研究[D];曲阜师范大学;2006年
5 刘平萍;量子信息论中热纠缠的研究[D];西南大学;2008年
6 王国友;簇态在量子信息中的应用研究[D];湖南师范大学;2007年
7 白娟;基于交叉克尔非线性的非局域贝尔态测量和量子信息转移[D];延边大学;2012年
8 胡桂玉;量子信息若干问题的研究[D];安徽大学;2010年
9 宋伟;量子克隆和量子删除的研究[D];安徽大学;2005年
10 伍典策;基于量子中继器的量子信息网络体系结构及路由技术研究[D];国防科学技术大学;2012年
,本文编号:2250846
本文链接:https://www.wllwen.com/kejilunwen/wltx/2250846.html