常规通信信号调制识别系统的设计与硬件实现
[Abstract]:Modulation type is an important characteristic of communication signal. With the development of wireless communication technology, modulation type is becoming more and more complex. The traditional manual modulation recognition technology can not meet the actual needs. Automatic modulation recognition using DSP,FPGA and software radio technology has become a trend. Automatic modulation recognition technology is widely used in ship electromagnetic interference monitoring, radio monitoring and other fields. The basic principle of modulation parameter estimation and modulation recognition of communication signal is studied in this paper. This paper presents a modulation recognition algorithm based on instantaneous statistical features and decision tree classifier for nine kinds of modulation signals, 2ASK / 4ASK / 2FSKC / 4FSKK / 2PSK / AMK / FM / USB, which are based on instantaneous statistical features and decision tree classifier. Compared with the previous algorithms, the advantage of this algorithm is that it can meet the needs of fast hardware implementation, less sampling points, and suitable for random symbol conditions. The recognition algorithm uses a new centralization parameter to improve the recognition effect of {2ASK _ 4ASK} and {2FSKN _ 4FSK}. A threshold automatic adjustment algorithm is used to estimate the SNR by selecting the reference parameters of SNR. The decision threshold can be adjusted automatically and the adaptability of the recognition algorithm to SNR is improved. Compared with many previous algorithms, this algorithm is still effective in the case of unknown carrier frequency. The high accuracy carrier frequency estimation algorithm CZT transform is used to obtain the carrier frequency of the signal to satisfy the precision requirement of extracting nonlinear phase. The MATLAB simulation shows that the proposed algorithm is effective under the condition that the sampling point is 1024 (16 random symbols) and the carrier frequency is unknown. The average recognition accuracy is 93.27 when the SNR is not less than 10dB, and 99.0 when SNR is not less than 15dB. The hardware platform of modulation recognition based on DSP FPGA structure is designed. The schematic diagram of hardware circuit and the design of PCB are completed. Signal Integrity Analysis of DSP Board (SI), completes the SI simulation of part of the circuit using SigXploer to ensure the stability and reliability of the hardware circuit, and completes the debugging of the hardware platform. The C language program of the recognition algorithm is simulated on the CCS platform, and the recognition rate of the recognition algorithm is calculated. Finally, the designed hardware platform is used to identify the five modulation signals produced by the signal generator in real time, and the desired results are achieved.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.3
【参考文献】
相关期刊论文 前10条
1 靳晓艳;周希元;;一种最大似然调制识别的快速算法[J];系统工程与电子技术;2013年03期
2 贾志军;孙洋;毛欣;;MPSK信号调制识别方法[J];四川兵工学报;2013年01期
3 徐斌;雷菁;李保国;;一种数字信号调制方式识别方法[J];通信技术;2011年11期
4 孟玲玲;李静;;基于循环谱相关方法的MFSK信号识别[J];无线电通信技术;2010年01期
5 朱雷;程汉文;吴乐南;;利用循环谱和参数统计的数字调制信号识别[J];应用科学学报;2009年02期
6 王芳;张瑞华;王兰勋;;基于小波变换的通信信号识别算法[J];通信技术;2008年09期
7 宋娇;葛临东;;一种基于高阶累积量的FSK信号识别新方法[J];通信技术;2008年04期
8 包锡锐;吴瑛;周欣;;基于高阶累积量的数字调制信号识别算法[J];信息工程大学学报;2007年04期
9 陈健;阔永红;李建东;马玉宝;;基于小波变换的数字调制信号识别方法的研究[J];电子与信息学报;2006年11期
10 李春辉;;调制体制识别算法综述[J];数字通信世界;2005年11期
相关博士学位论文 前2条
1 陆明泉;多信号的调制识别技术研究[D];电子科技大学;2008年
2 詹亚锋;通信信号自动制式识别及参数估计[D];清华大学;2004年
相关硕士学位论文 前10条
1 袁本义;通信信号调制识别算法研究与实现[D];解放军信息工程大学;2011年
2 卢璐;通信信号调制分类识别与参数提取技术研究[D];西安电子科技大学;2010年
3 郭洪志;通信信号识别系统的关键算法实现[D];浙江大学;2010年
4 宋勇;卫星通信信号的调制识别与参数估计[D];哈尔滨工程大学;2009年
5 莫乾坤;通信信号调制识别与解调技术研究[D];上海交通大学;2008年
6 魏瑾;低信噪比调制信号识别方法的研究[D];太原理工大学;2008年
7 喻俊峰;通信信号调制制式识别系统的研究及硬件实现[D];哈尔滨工程大学;2008年
8 卢娜;调制模式识别和信号特征提取的研究[D];西安电子科技大学;2008年
9 王长宇;数字信号调制方式盲识别的研究[D];哈尔滨工业大学;2006年
10 张鸣;软件无线电接收机中信号调制样式识别算法的研究[D];西安科技大学;2005年
,本文编号:2250917
本文链接:https://www.wllwen.com/kejilunwen/wltx/2250917.html