基于核函数的语音情感识别技术的研究
[Abstract]:As an important branch of emotion calculation, emotion recognition has attracted the attention of researchers at home and abroad in recent years. As one of the important ways of human communication, speech carries a large amount of emotional information. The speech emotion recognition technology enables the computer to recognize the emotional state of the speaker through the voice signal, realize more harmonious human-computer interaction, and has a very wide application prospect in real life. This paper mainly studies the recognition of speech emotion based on kernel function, introduces kernel method into the traditional pattern recognition algorithm, further improves the non-linear processing ability of the algorithm, and puts forward some improvement to the speech emotion recognition according to the corresponding algorithm. The main research contents and innovation points of this thesis are as follows: (1) the research background and significance of speech emotion recognition are expounded, and the domestic and foreign research status of emotion description model, emotion database, emotion characteristic parameter, feature health-reduction and emotion classification algorithm are summarized. (2) Design and record the Chinese voice emotion database, which contains five basic emotions such as happiness, anger, sadness, fear, calm and so on, and all the speech samples pass the validity check to ensure that the data conforms to the specification. The speech signal in the database is pre-processed, and the speech speed, energy and amplitude, fundamental frequency, resonance peak, MFCC and other parameters are extracted to form the emotion characteristic vector and the change rule of parameters in different emotional states is analyzed, and the basic work is done for the subsequent voice emotional experiment. (3) a method for combining core C mean clustering and nuclear K nearest neighbor classification is proposed for speech emotion recognition. The algorithm uses kernel mapping to map the original input space to the high-dimensional feature empty question, and performs C-means clustering in the feature space to construct a representative emotion template. and then classifying the test samples by using a K-nearest algorithm. The algorithm not only improves the nonlinear processing capability of the classifier by using the core method, but also overcomes the defect that the distance between the test sample and all the training samples needs to be calculated in the traditional nuclear K nearest neighbor classification, and the classification speed is improved. In order to further improve the accuracy of the calculation, this paper also introduces the theory of fuzzy sets into the algorithm. By constructing fuzzy polytypes to get better emotion clustering sets and constructing membership functions in the neighborhood classification, the test samples are subordinate to each emotion category in different degrees. and a more realistic classification result is obtained. The final experiment shows that the algorithm has more effective recognition efficiency. (4) applying the kernel sparse representation classification algorithm in speech emotion recognition, using the kernel mapping mechanism to extend the traditional sparse representation classifier to the kernel sparse representation classifier, overcoming the defect that the sparse representation classifier can not effectively solve the non-linear problem, the test samples are more accurately represented as a sparse linear combination of the training samples. At last, using the idea of local coding to improve the algorithm, a weighted kernel sparse representation classification algorithm based on local constraints is proposed. Compared with the kernel sparse representation classification algorithm, the algorithm can make the test samples sparse representation with more neighbor training samples. the accuracy of the classification can be improved to a certain extent. (5) The kernel functions in the support vector machine are deeply researched and improved. In order to highlight the difference of different features on the classification, the information of the feature importance degree is integrated into the polynomial kernel function and the Gaussian kernel function. Then using the improved polynomial kernel function and the Gaussian kernel function to form the combined kernel function, finally finding the optimal kernel parameters by the optimization algorithm to obtain the optimal combination kernel function. The algorithm not only improves the kernel kernel function, but also replaces the single kernel function by using the combination kernel function, and finds the optimal kernel parameter and the combined parameter through the optimization algorithm, and can say that the traditional support vector machine has multiple improvements to improve the performance of the algorithm.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN912.34
【相似文献】
相关期刊论文 前10条
1 赵力;黄程韦;;实用语音情感识别中的若干关键技术[J];数据采集与处理;2014年02期
2 陈建厦,李翠华;语音情感识别的研究进展[J];计算机工程;2005年13期
3 王茜;;一个语音情感识别系统的设计与实现[J];大众科技;2006年08期
4 孙亚;;远程教学中语音情感识别系统的研究与实现[J];长春理工大学学报(高教版);2008年02期
5 章国宝;宋清华;费树岷;赵艳;;语音情感识别研究[J];计算机技术与发展;2009年01期
6 石瑛;胡学钢;方磊;;基于决策树的多特征语音情感识别[J];计算机技术与发展;2009年01期
7 赵腊生;张强;魏小鹏;;语音情感识别研究进展[J];计算机应用研究;2009年02期
8 张石清;赵知劲;;噪声背景下的语音情感识别[J];西南交通大学学报;2009年03期
9 黄程韦;金峗;王青云;赵艳;赵力;;基于特征空间分解与融合的语音情感识别[J];信号处理;2010年06期
10 袁健;贺祥;许华虎;冯肖维;刘玲;;服务机器人的语音情感识别与交互技术研究[J];小型微型计算机系统;2010年07期
相关会议论文 前8条
1 陈建厦;;语音情感识别综述[A];第一届中国情感计算及智能交互学术会议论文集[C];2003年
2 杨桃香;杨鉴;毕福昆;;基于模糊聚类的语音情感识别[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
3 罗武骏;包永强;赵力;;基于模糊支持向量机的语音情感识别方法[A];2012'中国西部声学学术交流会论文集(Ⅱ)[C];2012年
4 王青;谢波;陈根才;;基于神经网络的汉语语音情感识别[A];第一届中国情感计算及智能交互学术会议论文集[C];2003年
5 张鼎天;徐明星;;基于调制频谱特征的自动语音情感识别[A];第十二届全国人机语音通讯学术会议(NCMMSC'2013)论文集[C];2013年
6 童灿;;基于boosting HMM的语音情感识别[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年
7 戴明洋;杨大利;徐明星;;语音情感识别中UBM训练集的组成研究[A];第十一届全国人机语音通讯学术会议论文集(一)[C];2011年
8 张卫;张雪英;孙颖;;基于HHT边际Teager能量谱的语音情感识别[A];第十二届全国人机语音通讯学术会议(NCMMSC'2013)论文集[C];2013年
相关博士学位论文 前6条
1 孙亚新;语音情感识别中的特征提取与识别算法研究[D];华南理工大学;2015年
2 韩文静;语音情感识别关键技术研究[D];哈尔滨工业大学;2013年
3 谢波;普通话语音情感识别关键技术研究[D];浙江大学;2006年
4 尤鸣宇;语音情感识别的关键技术研究[D];浙江大学;2007年
5 刘佳;语音情感识别的研究与应用[D];浙江大学;2009年
6 赵腊生;语音情感特征提取与识别方法研究[D];大连理工大学;2010年
相关硕士学位论文 前10条
1 陈晓东;基于卷积神经网络的语音情感识别[D];华南理工大学;2015年
2 孙志锋;语音情感识别研究[D];陕西师范大学;2015年
3 谭发曾;语音情感状态模糊识别研究[D];电子科技大学;2015年
4 陈鑫;相空间重构在语音情感识别中的研究[D];长沙理工大学;2014年
5 李昌群;基于特征选择的语音情感识别[D];合肥工业大学;2015年
6 陈文汐;基于核函数的语音情感识别技术的研究[D];东南大学;2015年
7 韩文静;基于神经网络的语音情感识别技术研究[D];哈尔滨工业大学;2007年
8 王颖;自适应语音情感识别方法研究[D];江苏大学;2009年
9 梁智兰;基于独立分量分析的语音情感识别研究[D];哈尔滨工程大学;2009年
10 郭春宇;语音情感识别技术的研究[D];哈尔滨工业大学;2006年
,本文编号:2254646
本文链接:https://www.wllwen.com/kejilunwen/wltx/2254646.html