基于局部与非局部策略的极化SAR相干斑抑制研究
[Abstract]:Polarimetric synthetic Aperture Radar (POLSAR) is a kind of multi-parameter, multi-channel microwave imaging radar, which can project objects to a certain extent, and can obtain scattering echo of the target in different polarization state, and describe the information contained in the target better. It has become a new technology in the field of remote sensing and a new trend in the development of synthetic Aperture Radar (SAR), which has been widely used in military, national defense, environment, agriculture and other fields. However, due to the principle defects of coherent imaging, there is a certain deviation between the target information obtained by polarized SAR system and the actual information, which leads to speckle noise in polarized SAR data, which seriously affects the interpretation and subsequent application of the data. Therefore, the suppression of speckle noise becomes the most important problem in the application of polarimetric SAR data. In this paper, the statistical distribution and speckle noise model of SAR data and polarized SAR data are introduced, and three speckle suppression algorithms are proposed. The main contents are as follows: 1. Based on the bilateral filtering of polarimetric SAR data and the relative total variation, an edge detection algorithm based on edge detection and two-sided filtering is proposed for polarimetric SAR speckle suppression. The homogeneous region and the edge texture detail area of the image are detected, and different values of the brightness information smoothing parameters of the bilateral filtering are set in different regions to make it more suitable for the processed pixels. The algorithm is simple and fast and can directly process the polarization covariance matrix C or the polarized coherence matrix T. Experimental results show that the proposed algorithm not only has relatively good performance for speckle noise suppression, but also maintains the edge texture details relatively well. 2. A polarimetric SAR speckle suppression algorithm based on non-local two-sided filtering and non-local mean filtering is proposed, which selects as many similar image blocks as possible. These similar image blocks are filtered by two sides. Finally, the results of the similar image blocks are weighted by non-local weighted averaging. The structural similarity of the image blocks and the pixel similarity of the single pixel are taken into account in both the structural similarity of the image blocks and the pixel similarity of the single pixel. This algorithm combines local and non-local strategies, not only considering the advantages of bilateral filtering, but also considering the advantages of non-local mean filtering. The experimental results show that the proposed algorithm has better speckle suppression effect on polarized SAR images both in homogeneous region and in edge texture detail region. The SVD algorithm with additive Gao Si white noise image is applied to speckle suppression of SAR data. Aiming at the statistical distribution of SAR data and the speckle noise model, In obtaining the SVD sample matrix, the Euclidean distance is replaced by the similarity distance suitable for SAR data, and a formula for calculating the threshold parameters of SVD for speckle noise of SAR data is proposed. In addition, considering the characteristics of polarized SAR data, the SVD method applied to speckle suppression of SAR data is extended to polarimetric SAR data to obtain similar image blocks and SVD threshold parameters on Span data. In maintaining polarization information has a certain role. Experimental results show that the proposed algorithm can achieve better performance in both SAR data and polarimetric SAR data, and its greater advantage lies in its effectiveness in single-view polarimetric SAR data processing. This paper is supported by the National Natural Science Foundation (No.61173092), the New Century Talent support Program (No.66ZY110) and the Shaanxi Province Scientific and technological Research and Development Program (No.2013KJXX-64).
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【共引文献】
相关期刊论文 前7条
1 李小明;程子光;甘少武;;基于遗传算法的雷达组网极化管理[J];舰船电子工程;2009年04期
2 王雪松;常宇亮;李永祯;戴幻尧;何密;肖顺平;;极化雷达的同时全极化测量与校准技术[J];科技导报;2011年26期
3 常宇亮;戴幻尧;李永祯;王雪松;;瞬态极化雷达中极化测量与校准的数学原理及实验验证[J];中国电子科学研究院学报;2010年02期
4 党晓江;李政杰;田波;;电磁波完全极化研究[J];中国电子科学研究院学报;2013年02期
5 郭凯;黄双华;刘涛;;简单雷达目标空域瞬态极化特性研究[J];舰船电子工程;2013年12期
6 常宇亮;王雪松;李永祯;肖顺平;;极化测量雷达的信号选择与处理[J];中国科学(F辑:信息科学);2009年12期
7 吴仁彪;卢晓光;李海;韩雁飞;;机载前视风切变检测气象雷达的研究进展[J];数据采集与处理;2014年04期
相关会议论文 前1条
1 李贺;洪家财;张若禹;;底部刻槽弹丸飞行姿态测量的RCS优化[A];第十届中国科协年会信息化与社会发展学术讨论会分会场论文集[C];2008年
相关博士学位论文 前7条
1 常宇亮;瞬态极化雷达测量、检测与抗干技术研究[D];国防科学技术大学;2010年
2 施龙飞;雷达极化抗干扰技术研究[D];国防科学技术大学;2007年
3 卜彦龙;面向INS/SAR组合导航的SAR景象区域适配性研究[D];国防科学技术大学;2009年
4 周广益;基于视觉认知的极化SAR图像应用关键技术研究[D];清华大学;2011年
5 刘芳芳;认知家庭基站极化域频谱感知与资源管理研究[D];北京邮电大学;2012年
6 王元钦;基于雷达极化的弹丸运动特征处理方法研究[D];哈尔滨工业大学;2012年
7 王娜;极化SAR图像人造目标检测技术研究[D];国防科学技术大学;2012年
相关硕士学位论文 前10条
1 刘桢;基于极化信息的SAR地物分类技术研究[D];解放军信息工程大学;2010年
2 温富东;宽带变极化米波雷达原理性试验与实测数据处理[D];西安电子科技大学;2011年
3 左美霞;基于散射特性相似性的极化SAR图像相干斑抑制研究[D];合肥工业大学;2011年
4 陶海鹏;基于偏振信息的主动激光水下目标成像探测研究[D];南京理工大学;2011年
5 宣延艳;极化SAR相干信息配准与变化检测算法研究[D];电子科技大学;2011年
6 钟耀霞;基于极化敏感阵列的空间到达角和极化参数的联合估计[D];电子科技大学;2011年
7 张轶鹏;地震电磁疑似异常特征提取与地震相关性分析[D];哈尔滨工业大学;2010年
8 游先亮;极化信息在弹载雷达系统目标检测中的应用[D];南京航空航天大学;2011年
9 秦建;极化宽带雷达的自适应目标检测[D];哈尔滨工业大学;2011年
10 金桂玉;目标近场电磁散射特性计算与应用[D];南京理工大学;2012年
,本文编号:2275692
本文链接:https://www.wllwen.com/kejilunwen/wltx/2275692.html