基于杂散特征的辐射源个体识别研究
[Abstract]:As a key technology in communication countermeasure field, the research on individual identification of emitter has attracted wide attention at home and abroad in recent years. With the increasing complexity of communication emitter equipment, how to intercept and analyze the individual characteristic information of emitter reflected in communication signal and classify it effectively has become a hot topic in individual identification. Among the existing research results in China, the identification of individual characteristics of emitter is mainly focused on different types of equipment, and the classification of features depends on the number of sufficient samples, while the research results abroad focus on transient signals. On the basis of summing up the relevant research at home and abroad, this paper takes the stray characteristics of the same radiation sources as the research object, and studies the extraction method and classification recognition of the stray characteristics of the same radiation sources. In the aspect of feature extraction, the marginal spectrum stray feature of steady state signal of emitter is extracted in this paper. Based on empirical mode decomposition (EMD) and wavelet packet reconstruction, the energy center of gravity and information entropy of marginal spectrum are obtained. However, in the original feature extraction method, the EMD method has the problem of modal aliasing, and the wavelet packet reconstruction criteria need to be selected by experience. In order to solve the above problems, an improved scheme is proposed. Firstly, the causes of modal aliasing in EMD are analyzed, and the standard of wavelet packet reconstruction and the input of EMD are improved. The method of superposition time spectrum is used to calculate the marginal spectrum of the signal. The influence of modal aliasing is reduced, the aggregation of stray feature distribution is improved, and the problem of serious doping degree is improved, and the degree of feature separation is improved to a certain extent. In the aspect of classification and recognition, two groups of classification experiments with different number of samples are carried out. Using K-nearest neighbor algorithm, neural network classifier and (SVM) classifier of support vector machine, the classification performance of communication signals with different modulation patterns is compared. The SVM classifier with the best performance is selected to compare the classification effect before and after the feature extraction method. The simulation results show that the improved feature extraction method can improve the classification performance of the emitter signal to a certain extent. It is suitable for different modulation types.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN975
【相似文献】
相关期刊论文 前10条
1 王华,李介谷;人脸斜视图象的特征提取与恢复[J];上海交通大学学报;1997年01期
2 黄丽莉;皋军;;基于局部加权的非线性特征提取方法[J];华中科技大学学报(自然科学版);2013年S1期
3 徐f ,邱道尹,沈宪章;粮仓害虫的特征提取与分类的研究[J];郑州工业大学学报;2000年04期
4 张焱;张志龙;沈振康;;一种融入运动特性的显著性特征提取方法[J];国防科技大学学报;2008年03期
5 张辉;林建华;;网上交易历史记录的特征提取[J];企业科技与发展;2008年18期
6 刘美春;赵敏;谢胜利;;基于邻域空间模式的运动相关电位特征提取方法[J];华南理工大学学报(自然科学版);2009年10期
7 王天杨;程卫东;李建勇;;基于3种测度值的特征提取方法优化评价[J];仪器仪表学报;2010年04期
8 李霆,吉小军,李世中,彭长清,宋寿鹏;回归谱特征提取与识别效果分析[J];探测与控制学报;1999年04期
9 王智文,谢国庆;图像中点、线、面特征提取[J];广西工学院学报;2005年03期
10 朱永娇;;汉字特征提取的量化研究[J];科学技术与工程;2007年10期
相关会议论文 前10条
1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年
2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年
4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年
5 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年
6 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年
9 刘红;陈光,
本文编号:2294649
本文链接:https://www.wllwen.com/kejilunwen/wltx/2294649.html