基于ENF信号的数字音频篡改盲检测研究
[Abstract]:The wide application of digital multimedia equipment makes the recording of digital audio more and more convenient, and the emergence of various audio editing software makes audio tampering easier and easier. In order to verify the originality, integrity and authenticity of digital audio, it is more urgent to seek reliable audio tampering detection methods. Digital audio tampering detection based on power network frequency (ElectricNetwork Frequency, ENF) is a kind of evidence gathering method which has been paid more attention in recent years. However, the existing methods based on ENF have some shortcomings, such as the need of ENF reference database in judging tampering. Tampering with positioning accuracy is not high. Aiming at these shortcomings, the blind detection method of audio tampering without ENF reference database is studied in this paper. The main work and innovation are as follows: (1) A maximum correlation offset (Maximum Offset for CrossCorrelation, using ENF signal is proposed. MOCC). The ENF signal is divided into sub-blocks and the offset of the initial sub-block and each sub-block is calculated when the maximum cross-correlation value is obtained. The audio tampering is judged according to the consistency of each sub-block MOCC, and the tamper region location and tamper type estimation are realized. For different application scenarios, visual detection, automatic detection and fast detection are also proposed. Experiments show that the method can locate tamper accurately and judge whether the tamper type is deleted or inserted according to whether the content of the tamper region is silent part or speech part. In addition, because the method is detected in the time domain and does not need to be converted to the transform domain, the computational complexity of the method is smaller than that of the existing methods based on ENF phase. (2) aiming at the problem that the method in (1) is disturbed by noise when calculating MOCC, an improved MOCC audio tamper detection method is proposed. An ideal sine wave is introduced as the reference signal to enhance the ENF signal by using the multiple cross-correlation between the reference signal and the ENF sub-block signal, and the MOCC, of the enhanced ENF sub-block signal is calculated by using the reference signal. According to the change of MOCC, the tamper is located and the type of tamper is judged. Experiments show that this method can effectively improve the signal-to-noise ratio of ENF signal, reduce the interference of MOCC, and improve the accuracy of tampering detection under low false alarm rate. In addition, there are some robustness in resisting additive noise, audio resampling and audio compression. (3) A dual-mechanism audio tamper detection method based on minimum average amplitude offset (Minimum Offset for AverageMagnitude Difference, MOAMD) is proposed to improve the accuracy of tamper location. The audio tamper is detected by MOAMD to simplify the calculation of MOCC, and the tamper region is located by combining the curve variation of MOAMD and the slope of extreme point of MOAMD curve. Experiments show that this method can effectively improve the accuracy of tampering localization, and the two-mechanism can be extended to other methods. (4) an audio tamper detection method based on fast transversal filtering (Fast Transversal Filter,FTF (ENF neighborhood correlation coefficient) is proposed to improve the accuracy of existing methods. The correlation coefficient of the neighborhood block of ENF is calculated, and the correlation coefficient is filtered by FTF adaptive filter. The tampering is judged according to the change of error energy after filtering, and the tamper location is realized. Experiments show that this method can effectively improve the accuracy of tamper detection, and its advantages are more obvious in the case of large fluctuation range of ENF and low signal-to-noise ratio (SNR).
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN919.8
【相似文献】
相关期刊论文 前10条
1 刘蓉;霍甲;;信号盲检测应用情况简述[J];数字通信世界;2014年06期
2 张昀;于舒娟;王京;;基于自调节粒子群算法的盲检测[J];计算机技术与发展;2013年11期
3 王伟;方勇;;基于有限差分的置换图像盲检测方法[J];电子学报;2010年10期
4 刘潘梅;孙容海;吴建源;;一种新的区域复制图像篡改盲检测技术[J];计算机工程与应用;2012年09期
5 詹双环;张鸿宾;;基于小波分解和方差分析的图像信息隐藏盲检测[J];电子与信息学报;2007年06期
6 韩鹏;杨晓元;唐玉华;;基于一类支持向量机的隐秘图像盲检测算法[J];计算机工程与应用;2006年35期
7 平玲娣;刘祖根;史烈;孙康;;基于易变特征实现隐藏信息的盲检测[J];浙江大学学报(工学版);2007年03期
8 刘燕;刘朝阳;王安义;;一种快速传输格式盲检测的方法[J];数字通信;2011年03期
9 刘万贤;彭华;;一种突发直扩信号盲检测算法[J];信息工程大学学报;2013年06期
10 刘杰;张立民;王建雄;;直扩信号盲检测方法研究[J];舰船电子工程;2014年07期
相关会议论文 前2条
1 阮秀凯;张志涌;;Hopfield神经网盲检测统计信息缺失信号[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
2 罗向阳;王道顺;汪萍;刘粉林;;基于图像多域特征缩放与BP网络的信息隐藏盲检测[A];第七届全国信息隐藏暨多媒体信息安全学术大会论文集[C];2007年
相关博士学位论文 前3条
1 胡玲娜;静止图像数字水印的盲检测算法研究[D];上海交通大学;2010年
2 吕志胜;基于ENF信号的数字音频篡改盲检测研究[D];华南理工大学;2014年
3 罗向阳;数字图像隐写检测关键问题研究[D];解放军信息工程大学;2010年
相关硕士学位论文 前10条
1 夏yN;基于量子免疫优化的盲检测算法[D];南京邮电大学;2014年
2 张蓉;含公零点信道的信号盲检测[D];南京邮电大学;2012年
3 迟旭斌;直接序列扩频信号的盲检测和参数估计方法[D];西安电子科技大学;2014年
4 范乐园;半可逆FIR-MIMO系统多值信号盲检测[D];南京邮电大学;2014年
5 韩飞;正交空时分组码的最大似然盲检测算法研究[D];西南交通大学;2014年
6 许乐;基于FPGA的下行PDCCH盲检测的实现[D];西安电子科技大学;2012年
7 钱建平;复值多态连续Hopfield网盲检测MPSK信号[D];南京邮电大学;2012年
8 杨阳;基于模式识别的JPEG图像通用盲检测方法研究[D];合肥工业大学;2012年
9 管超;基于SVM的图像隐写盲检测[D];江南大学;2008年
10 刘飞;DS/CDMA信号盲检测与分离技术研究[D];电子科技大学;2006年
本文编号:2302191
本文链接:https://www.wllwen.com/kejilunwen/wltx/2302191.html