声矢量阵校正及测向技术研究
[Abstract]:Compared with the acoustic pressure array, the acoustic vector array overcomes the fuzzy problem of the left and right sides, extends the aperture of the base array, reduces the interference background and the detection threshold, and has obvious advantages in the case of the on-line array, the plane array or the small array element number. Based on the above points, the acoustic vector array signal processing technology is one of the hot spots in the underwater acoustic field, and the United States and Russia strongly study how to apply the acoustic vector array to naval equipment for the detection and localization of underwater targets. This paper mainly studies the correction of the acoustic vector array and the direction-finding technique. The high resolution performance of a large number of acoustic vector array direction finding techniques is obtained on the premise of the ideal array flow pattern, and in the actual situation, the acoustic vector array often has a plurality of array errors, and the array errors will cause the high-resolution direction-finding algorithm performance of the acoustic vector array to be severely degraded and even become invalid. Therefore, it is essential to perform array correction on the acoustic vector array before using the high-resolution direction-finding technique of the acoustic vector array. In the case of acoustic vector array direction finding, most of the current position estimation algorithms of the acoustic vector array have a large amount of computation, which greatly increases the cost and burden of the system and becomes the bottleneck of some systems engineering. In addition, in the underwater acoustic environment, there is often a coherent source, and it is of great significance to study the multi-object resolution of the coherent source of the acoustic vector array to the acoustic vector array direction finding technology. The main contents of this paper are as follows: 1. Based on the multi-level Wiener filter (MSWF), an SMSWF (Simplified Multi-Stage Wiener Filter) algorithm based on multi-level Wiener filter (MSWF) is proposed. The SMSWF algorithm estimates the array error parameters by using the orientation of the correction source and the waveform information, and does not need the covariance matrix calculation and the characteristic value decomposition process, greatly reduces the calculation amount, and has the same array error parameter estimation performance as the characteristic decomposition method. It is found that when a single source is incident on the array and the source waveform is known, the signal subspace obtained by the SMSWF algorithm is equivalent to the signal subspace estimated by the feature decomposition method, so that the calculation amount of the signal processing method based on the feature decomposition can be greatly reduced. A large number of computer simulation and pool data processing results verify the superiority of the SMSWF algorithm. In the engineering application, the acoustic vector array often has a matrix element attitude error. In order to fully understand and correct the matrix element attitude error, the influence of the array element attitude error on the beam pattern of the acoustic vector array is analyzed, and the influence of the matrix element attitude error on the MUSIC algorithm is simulated and analyzed. In the actual working environment, since the active correction algorithm is often limited, a self-correction algorithm for the attitude error of the acoustic vector array is proposed, which can realize the joint estimation of the matrix element attitude error parameter and the source DOA, and has good parameter estimation precision and fast convergence speed. The superiority of this self-tuning algorithm is verified by theoretical analysis and computer simulation. In this paper, a V-MSWF algorithm and a PV-MSWF algorithm are proposed to solve the problem of the high-resolution position estimation algorithm of the acoustic vector array. The V-MSWF algorithm is an extension of the scalar array MSWF algorithm in the acoustic vector array. The PV-MSWF algorithm is based on the combined information processing based on the sound pressure vibration speed, the electronic rotation vector of the reference array element is selected as the desired signal, and the signal subspace is quickly estimated by using the multi-level Wiener filter (MSWF). The algorithm is based on the principle of the coherence of the sound pressure and the vibration velocity of the vector sensor, and makes full use of the combined anti-interference ability of the sound pressure vibration speed, and effectively suppresses the isotropic noise. the two algorithms do not need to calculate the cross-covariance matrix of the acoustic vector array, and the characteristic value decomposition is not needed, so that the calculation amount is greatly reduced. The results of computer simulation and pool test verify the DOA estimation performance of the V-MSWF algorithm and the PV-MS WF algorithm. The PVFS (Particle Velocity Field Smoothing) algorithm based on the acoustic vector array is an effective coherent source DOA estimation algorithm, but when a large number of coherent sources are present, the performance of the algorithm is drastically reduced or even ineffective. On the basis of the PVFS algorithm, a matrix-square-Smoothing-PVFS algorithm is proposed, which is an improvement of the PVFS algorithm. and greatly increases the number of its resolved coherent sources. The results of computer simulation and pool test show that the MSS-PVFS algorithm has good DOA estimation performance.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN911.7;TN713
【相似文献】
相关期刊论文 前10条
1 由延军,黄建国,李雄;高分辨方位估计克拉美-罗界的改进算法[J];微处理机;2005年03期
2 李强;李志舜;穆海燕;;分布式目标方位估计新方法[J];弹箭与制导学报;2005年SD期
3 杨旭东;黄建国;汤琦;;方位估计的克拉美-罗界改进算法研究[J];探测与控制学报;2006年01期
4 马培锋;严胜刚;;分布式目标方位估计的一种改进算法[J];弹箭与制导学报;2007年03期
5 周敏;;相干分布式目标的方位估计[J];鱼雷技术;2008年01期
6 肖龙帅;黄华;夏建刚;李灵;;压缩传感方位估计[J];通信技术;2009年11期
7 宋海岩;朴胜春;秦进平;;浅海远程目标稳健方位估计方法研究[J];信号处理;2012年11期
8 冯西安;黄建国;;水下宽带目标方位估计的克拉美-罗界[J];兵工学报;2007年03期
9 李强;李志舜;;基于低阶近似分布源的目标方位估计[J];电声技术;2007年12期
10 侯云山;黄建国;张立杰;金勇;;一种新的浅海目标方位估计方法[J];西安交通大学学报;2008年10期
相关会议论文 前10条
1 鄢社锋;侯朝焕;马远良;;基于空域预滤波的目标方位估计方法[A];2005年全国水声学学术会议论文集[C];2005年
2 马培锋;严胜刚;;相干分布源的方位估计[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
3 马艳;孔燕;杜金香;;最大似然方位估计的迭代求解[A];2011'中国西部声学学术交流会论文集[C];2011年
4 蒋飚;孙长瑜;;噪声方差匹配高分辨方位估计算法研究[A];中国声学学会2003年青年学术会议[CYCA'03]论文集[C];2003年
5 许策;章新华;夏志军;宋元;;基于旋转不变技术的目标方位估计算法[A];中国声学学会2007年青年学术会议论文集(下)[C];2007年
6 陈鹏;陈航;;基于最小模方法的相干源方位估计[A];2004年全国水声学学术会议论文集[C];2004年
7 李强;李志舜;;一种新的非相干分布源模型及方位估计方法[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
8 张德明;郭良浩;张仁和;;宽带声源方位估计的聚焦最小方差方法[A];2004年全国水声学学术会议论文集[C];2004年
9 张本辉;章新华;刘家轩;;矩阵预滤波目标方位估计方法[A];2011'中国西部声学学术交流会论文集[C];2011年
10 和斌;申晓红;;体积阵恒定束宽及高分辨方位估计的实验研究[A];2011'中国西部声学学术交流会论文集[C];2011年
相关博士学位论文 前5条
1 张柯;声矢量阵校正及测向技术研究[D];哈尔滨工程大学;2014年
2 曾耀平;被动多目标分辨与方位估计技术研究[D];西北工业大学;2016年
3 李强;分布源目标方位估计研究[D];西北工业大学;2007年
4 冯杰;稳健波束形成与高分辨方位估计技术研究[D];西北工业大学;2006年
5 宋海岩;具有高稳健性的浅海目标方位估计方法研究[D];哈尔滨工程大学;2011年
相关硕士学位论文 前9条
1 沈小正;基于压缩感知理论的声矢量阵方位估计方法研究[D];江苏科技大学;2016年
2 李雄;基于蒙特卡罗方法的高分辨方位估计新方法研究[D];西北工业大学;2005年
3 孙毅;基于贝叶斯原理和蒙特卡罗方法的高分辨方位估计新方法研究[D];西北工业大学;2003年
4 杨海;分布式目标建模及其高分辨方位估计[D];西北工业大学;2001年
5 贾伟娜;水下多目标高分辨方位估计技术研究[D];杭州电子科技大学;2013年
6 鲁瑛;贝叶斯高分辨方位估计方法的性能分析与应用研究[D];西北工业大学;2001年
7 周宁;宽带源方位估计算法研究[D];河南大学;2010年
8 侯颖妮;水下多目标高分辨方位估计的关键技术研究[D];西北工业大学;2007年
9 华洋;子空间相交方位估计方法性能分析[D];中国海洋大学;2008年
,本文编号:2323123
本文链接:https://www.wllwen.com/kejilunwen/wltx/2323123.html