高分辨率SAR图像车辆目标分形特征提取技术
[Abstract]:With the rapid development of synthetic Aperture Radar (SAR) technology and the diversification of loading platform, real-time monitoring of battlefield environment has become possible. Especially when the resolution of SAR image reaches sub-decimeter level, it has the ability of fast detection and recognition of battlefield vehicle targets (such as tanks, armored vehicles, trucks, missile launchers, etc.). Therefore, how to realize vehicle target interpretation based on high-resolution SAR images has become a key problem in battlefield information processing. Target feature extraction technology is the core of vehicle target interpretation processing in SAR images. The distinguishing ability and universality of the extracted features greatly affect the false alarm rate and classification accuracy of vehicle target identification in SAR images. Aiming at the problem of high false alarm probability in the process of vehicle target detection in SAR images, this paper analyzes the phenomenological differences between vehicle targets and background objects on SAR images. The fractal theory is used to realize the quantitative representation of the phenomenological characteristics of the above differences and to distinguish the vehicle objects from the natural features. The basic concept, physical properties, research status and development trend of fractal theory are reviewed in this paper. Combined with the complex and variable backscattering characteristics of the object in the SAR imaging process, the pixel intensity of the vehicle object presents the characteristics of sharp fluctuation and obvious gap size on the SAR image. The limitation of Euclidean geometry in describing the above phenomena is pointed out. Based on the fractal theory, the physical quantities of vehicle target features are summarized, such as fractal dimension feature, extended fractal feature and clearance feature. Then, the paper focuses on how to extract various clearance features of vehicle targets based on fractal theory. Based on the analysis of the existing gap degree features, a double variance gap degree feature is proposed in this paper. This feature defines the box mass as the variance of the pixel amplitude in the box, then calculates the standard variance of the box mass, and obtains the double variance of the pixel set in the whole slice. The comparison and analysis of various measured data show that the characteristics of double variance gap degree can improve the performance of vehicle target identification in SAR images and have good stability. By mining the significant differences between vehicle targets and natural objects on high resolution SAR images, a new feature vector of high dimensional stratified clearance degree is proposed based on fractal theory. The feature vector can quantitatively describe the clearance degree of vehicle target edge contour and the irregularity of target pixels at different scales, and can be used to eliminate false alarm generated by natural objects in the process of target extraction. In the calculation of the feature vector, the linear transformation of the measured slice data is firstly carried out to unify the dynamic range of the gray level of the pixel. Then, the pixel amplitude variance of each layer is taken as the one dimensional component of the feature vector of high dimensional stratification gap degree. Finally, a fuzzy C-means clustering method is used to deal with the feature vectors of high dimensional stratified clearance degree, and the membership function is used to identify the vehicle objects from the background objects. In this paper, simulated SAR image data, MSTAR database and domestic independent airborne SAR image data are used to test the discriminant performance of various gap features extracted in this paper, and to compare and analyze them.
【学位授予单位】:国防科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 魏晗;张长江;胡敏;;红外车辆目标的自动模糊分割[J];光电工程;2008年08期
2 黄建清;李中益;张利珍;;基于视频车辆目标检测的阴影去除的研究[J];广西轻工业;2007年05期
3 计科峰;邢相薇;邹焕新;李仁杰;;基于阴影的SAR图像车辆目标三维特征提取[J];雷达科学与技术;2011年06期
4 姜越鹏,安钢;车辆目标的计算机模式识别[J];测试技术学报;1997年02期
5 李禹;计科峰;吴永辉;粟毅;;一种SAR图像车辆目标鉴别特征及其提取方法[J];遥感学报;2009年02期
6 迟健男;张朝晖;周楠楠;郝彦爽;;基于特征的车辆目标复合探测方法研究[J];仪器仪表学报;2008年12期
7 李禹;计科峰;吴永辉;粟毅;;高分辨率SAR图像车辆目标几何特征提取方法[J];系统工程与电子技术;2009年01期
8 杨岢铭;王怀军;李禹;;基于RM算法的车辆目标SAR精细仿真成像[J];计算机工程与应用;2012年26期
9 李征,徐欣,游志胜;使用弱反光信息定位车辆目标[J];激光杂志;2002年05期
10 王金玉;杨圆圆;;基于遗传算法的红外车辆目标模糊增强[J];科学技术与工程;2009年10期
相关博士学位论文 前1条
1 李彦兵;基于微多普勒效应的运动车辆目标分类研究[D];西安电子科技大学;2013年
相关硕士学位论文 前10条
1 姚伟;基于视频的车流量检测系统研究与实现[D];南昌航空大学;2015年
2 方圆;基于视觉显著性的红外运动车辆目标检测[D];华中科技大学;2014年
3 申鹏;行车安全自动检测关键技术研究与实现[D];电子科技大学;2016年
4 闫国伟;车路协同系统中基于部件的车辆目标检测方法研究[D];长安大学;2016年
5 黄凯;高分辨率SAR图像车辆目标分形特征提取技术[D];国防科学技术大学;2014年
6 黄宇;车辆目标类型识别算法研究与实现[D];电子科技大学;2006年
7 范凯波;基于几何特征的车辆目标分类研究[D];天津理工大学;2012年
8 张晓利;卫星影像中城市道路区域车辆目标提取方法研究[D];北京交通大学;2015年
9 高浩军;视频图像序列中车辆目标的检测与识别研究[D];扬州大学;2007年
10 徐佳玉;交通信息采集系统中的车辆目标检测与识别[D];中南大学;2005年
,本文编号:2332653
本文链接:https://www.wllwen.com/kejilunwen/wltx/2332653.html