利用压缩感知提升极化敏感阵列参数估计性能的方法研究
[Abstract]:Compared with scalar antennas, polarization-sensitive array signal processing increases the dimension of polarization parameter estimation, and improves the output performance of array signal processing (including parameter estimation) by using the spatial and polarization domain information of incident signal simultaneously. So more and more researchers in the field of array signal processing pay more and more attention. The traditional joint polarization-spatial domain spectral estimation method uses the rotation invariance of polarization-spatial domain to solve the direction of arrival (pitch angle, azimuth) and polarization state (auxiliary polarization angle, polarization phase difference). However, there are amplitude and phase errors in practice, which result in the rotation invariance is difficult to satisfy, and the performance of parameter estimation is degraded or even completely invalid. To solve this problem, compression sensing is considered to reduce the complexity of hardware and algorithm and to improve the performance of parameter estimation of polarization-sensitive arrays in the case of amplitude-phase error. Therefore, based on complete electromagnetic vector sensor and tri-orthogonal dipole array, the parameter estimation performance of polarization-sensitive array based on compression sensing is studied. Aiming at the problem of poor precision of parameter estimation of complete electromagnetic vector sensor, a joint polarization-spatial domain VS-OMP (Vector-Sensor Orthogonal Matching Pursuit) compressed sensing spectrum estimation method) based on complete electromagnetic vector and Z-axis polarization direction plane array of magnetic field is proposed. Firstly, the time shift invariance is used to estimate the direction of arrival (DOA) and polarization state of the signals received by the complete electromagnetic vector sensor at the origin of the coordinate axis. Secondly, taking the direction of arrival as the center and the given error range as the radius, the spatial local splicing dictionary of the plane array is established, and then the precise estimation of the direction of arrival is realized by the orthogonal matching tracking method. The simulation results verify the effectiveness of the proposed method, and show that the performance of the method is close to that of the rotating invariant subspace (Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT method in the case of single source, but in the case of strong or weak multi-source, the performance of the proposed method is similar to that of the rotation-invariant subspace method. The estimation accuracy of ESPRIT method and VS-OMP method are not high. In view of the coexistence of strong and weak signals and the existence of amplitude and phase errors, a robust compression sensing parameter estimation method based on the separation of strong and weak signals based on three orthogonal dipole arrays is proposed. For the three electric field components received by the triorthogonal dipole array, the direction of arrival (DOA) estimation of the three sets of dipole arrays is realized by using the OMP method, and the numerical average of these three sets of estimation results are obtained. Secondly, the enhancement of weak signal and the suppression of strong signal are realized by the method of shape preserving zero adjustment, and the pollution of polarization information is avoided. Finally, the polarization state of strong and weak target is calculated by solving the normalized electric field vector solution. The simulation results show that the proposed method improves the performance of polarization-spatial parameter estimation in the presence of amplitude-phase errors. In the case of coherent sources, the parameter estimation of coherent sources can be realized without additional processing. In general, compared with the traditional joint polarization-spatial spectral estimation method based on ESPRIT, the performance of polarization-sensitive array parameter estimation can be improved by using compressed sensing method in the case of coherent source and amplitude and phase error.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7
【相似文献】
相关期刊论文 前10条
1 王珊珊;王建英;尹忠科;程旺宗;;压缩传感理论在参数估计中的应用[J];计算机工程与应用;2010年12期
2 吴雷;李U_尚;;混沌系统参数估计问题综述[J];中国高新技术企业;2012年30期
3 赵永利;;一种多变量CAR模型结构和参数的辨识方法[J];黑龙江自动化技术与应用;1989年04期
4 敖金刚;鲁千红;蔡春;;实际采集数据的参数估计及其分布检验分析[J];空军雷达学院学报;2006年04期
5 杨卫锋;曾芳玲;;区间分析及其在参数估计中的应用[J];信息技术;2009年04期
6 戴宪华,,黄继武;一种收敛于全局无偏最优解的非线性自回归(NAR)预测[J];电子学报;1997年12期
7 岑翼刚,孙德宝,任毅;利用小波对信号进行去噪及参数估计[J];现代雷达;2003年03期
8 雷开洪;游庆山;;基于循环平稳特性的直扩信号检测与参数估计[J];四川大学学报(自然科学版);2010年01期
9 葛新科,胡保生;参数估计的Systolic算法[J];控制理论与应用;1994年05期
10 高伟;;混沌系统参数估计结果的不确定性分析[J];计算机应用研究;2010年01期
相关会议论文 前10条
1 林军;李寿涛;;基于麦夸尔特法的连续模型的参数估计[A];第24届中国控制与决策会议论文集[C];2012年
2 杨世永;李宏伟;何水明;;乘性和加性噪声中二维谐波的参数估计[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
3 冯羽;;参数估计在汽车工程领域的应用[A];“广汽丰田杯”广东省汽车行业第七期学术会议论文集[C];2013年
4 欧阳楷;邵颉;刘卫芳;李智;李忠诚;单希征;;基于遗传算法的用于医学诊断的生物神经网络参数估计[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
5 顾亚平;许伟杰;朱安珏;刘国安;;一种基于DSP的水下高速运动目标的参数估计[A];中国声学学会1999年青年学术会议[CYCA'99]论文集[C];1999年
6 张帆;何青;童调生;;基于外定界自适应约束的集员参数估计[A];2004全国测控、计量与仪器仪表学术年会论文集(上册)[C];2004年
7 朱胜强;;parscale参数估计时ridge的v,w参数设定对估计结果的影响[A];全国教育与心理统计与测量学术年会暨第八届海峡两岸心理与教育测验学术研讨会论文摘要集[C];2008年
8 王晗;汪晋宽;薛延波;刘志刚;;无线通信系统中的多路径参数估计进展研究[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年
9 赵明旺;;方块脉冲函数在连续系统的递推应用:(一)递推参数估计[A];1991年控制理论及其应用年会论文集(上)[C];1991年
10 陈行勇;王yN;陈海坚;;基于微多普勒像的直升机目标参数估计[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
相关博士学位论文 前10条
1 陈琢;混沌在小信号测量与系统参数估计中的应用[D];浙江大学;2004年
2 姚晖;分布式信号源参数估计技术研究[D];解放军信息工程大学;2013年
3 郭贤生;多阵列分布源参数估计及跟踪方法研究[D];电子科技大学;2008年
4 秦国栋;微波稀布阵SIAR参数估计及相关技术研究[D];西安电子科技大学;2009年
5 田野;基于稀疏重构的阵列信号多参数估计[D];吉林大学;2014年
6 范影乐;混沌动力学在参数估计中的研究[D];浙江大学;2001年
7 易岷;时延及相关参数估计技术研究[D];电子科技大学;2004年
8 李丽;基于FRFT的双基地MIMO雷达目标参数估计[D];大连理工大学;2013年
9 陈彩云;基于Hausdorff距离的参数估计收敛性分析[D];哈尔滨工业大学;2014年
10 陈彩云;基于Hausdorff距离的参数估计收敛性分析[D];哈尔滨工业大学;2014年
本文编号:2385403
本文链接:https://www.wllwen.com/kejilunwen/wltx/2385403.html