当前位置:主页 > 科技论文 > 网络通信论文 >

EMD去噪与MUSIC算法在DOA估计中的联合应用

发布时间:2019-01-07 20:46
【摘要】:矢量水听器与传统的声压水听器相比具有很多的优势,而由其组成的矢量阵更能提高阵列的性能。MUSIC算法是阵列信号处理中具有里程碑意义的一类算法,但它的缺陷在于性能严重依赖于信噪比,其分辨性能会随着信噪比的降低而显著下降。本文提出了一种基于EMD去噪与MUSIC算法相结合的联合估计方法。其基本思路是:首先用本文构造的基于噪声统计特性的EMD去噪方法对各基元接收到的信号分别进行EMD去噪预处理,再将去噪后的数据进行MUSIC方位估计。本文前半部分研究了EMD算法以及其在信号去噪中的应用。文中深入探讨了噪声及噪声经EMD分解后各个分量的统计特性。在假定首个模态分量为噪声的前提下,提出了一种基于噪声统计特性的EMD去噪新方法。首先,将经过EMD分解得到的首个模态分量每次随机排序并与其他的分量进行重构,将多次重构结果累加求平均后,由于噪声的随机特性,便得到了信噪比改善的信号分量:而后再对新分量重新进行分解,重复该操作数次;最后,得到噪声功率得到很大抑制的信号分量。该方法可以简化为:随机排序-重构-累加-求平均-再分解-重复前述操作的过程。仿真实验表明,该方法在低信噪比的信号去噪中表现了良好的性能,其为低信噪比去噪提供了新思路。本文后半部分深入研究了MUSIC算法的基本理论,并分析了影响MUSIC算法定向精度的各个因素。针对MUSIC算法在低信噪比时无法准确对信号源进行定向及对多目标的分辨能力差的问题,结合前半部改进后的基于噪声统计特性的EMD去噪新方法,通过仿真实验表明,MUSIC空间谱的主波束宽度锐化,旁瓣降低,可提高对信号源的定向精度及对多目标的分辨能力。
[Abstract]:The vector hydrophone has many advantages compared with the traditional acoustic hydrophone, and the vector array composed of vector hydrophone can improve the performance of the array. MUSIC algorithm is a kind of landmark algorithm in array signal processing. But its performance depends heavily on signal-to-noise ratio (SNR), and its resolution performance will decrease with the decrease of SNR. In this paper, a joint estimation method based on EMD denoising and MUSIC algorithm is proposed. The basic ideas are as follows: firstly, the EMD denoising method based on noise statistics is used to pre-process the received signals by EMD, and then to estimate the MUSIC azimuth of the de-noised data. In the first half of this paper, the EMD algorithm and its application in signal denoising are studied. The statistical properties of each component of noise and noise decomposed by EMD are discussed in detail. Under the assumption that the first modal component is noise, a new EMD denoising method based on the statistical characteristics of noise is proposed. First of all, the first modal component obtained by EMD decomposition is sorted randomly each time and reconstructed with other components. After the multiple reconstruction results are accumulated to average, because of the random characteristic of noise, The signal component with improved signal-to-noise ratio (SNR) is obtained: then the new component is decomposed again and the operation is repeated several times; Finally, the noise power is greatly suppressed. The method can be simplified as: random sort-refactoring-accumulative-average-refactoring-repeating the previous operation. The simulation results show that the proposed method performs well in signal denoising with low signal-to-noise ratio (SNR) and provides a new idea for de-noising with low signal-to-noise ratio (SNR). In the second half of this paper, the basic theory of MUSIC algorithm is deeply studied, and the factors that affect the orientation accuracy of MUSIC algorithm are analyzed. Aiming at the problem that the MUSIC algorithm can not accurately orient the signal source at low signal-to-noise ratio (SNR) and has poor resolution to multiple targets, combined with the improved EMD denoising method based on the noise statistical characteristics in the first half, the simulation results show that the proposed method can be used to solve the problem. The main beam width of MUSIC spectrum is sharpened and the sidelobe is reduced, which can improve the orientation accuracy of signal source and the resolution of multi-target.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN911.4

【参考文献】

相关期刊论文 前5条

1 刘增东;刘建国;陆亦怀;赵雪松;黄书华;冯巍巍;肖锋钢;;基于EMD的激光雷达信号去噪方法[J];光电工程;2008年06期

2 程恩;袁飞;苏为;高春仙;曾文俊;孙海信;胡晓毅;;水声通信技术研究进展[J];厦门大学学报(自然科学版);2011年02期

3 高星辉,张承云,常鸿森;改进MUSIC算法对信号DOA的估计[J];系统仿真学报;2005年01期

4 郭小红;徐小辉;赵树强;;基于经验模态分解的外弹道降噪方法及应用[J];宇航学报;2008年04期

5 张袁元;李舜酩;胡伊贤;江星星;郭海东;;LMS方法的改进及联合EEMD在振动信号去噪中的应用[J];振动与冲击;2013年20期

相关硕士学位论文 前4条

1 郑洪;MUSIC算法与波达方向估计研究[D];四川大学;2005年

2 于伟凯;EMD时频分析方法的理论研究与应用[D];燕山大学;2006年

3 贾金伟;小波包去噪在循环平稳信号DOA估计中的应用研究[D];吉林大学;2010年

4 蔡盛盛;面向目标波达方向实时估计的传声器阵列系统研究[D];浙江大学;2013年



本文编号:2404142

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2404142.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户415cc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com