基于快速独立分量分析的脑电波信号降噪
发布时间:2019-03-05 16:25
【摘要】:针对原始脑电波信号存在非平稳性且非常容易受到各种信号的干扰等特点,对基于小波变换和快速独立分量分析的脑电波信号的滤波降噪方法进行了研究,说明了小波变换和快速独立分量分析的降噪原理,并通过对利用MindSet耳机采集得到的原始脑电波数据的处理,证明了快速独立分量分析算法可以将原始脑电波信号中包含的心电伪迹和工频干扰等多种干扰信号成功地分离出来,同时比较了两种方法的性能,验证了基于快速独立分量分析的降噪方法具有明显的优越性。
[Abstract]:In view of the non-stationarity of the original EEG signal and its very easy to be interfered by various signals, the filtering and de-noising method of EEG signal based on wavelet transform and fast independent component analysis is studied, and the method of filtering and denoising based on wavelet transform and fast independent component analysis is studied. The de-noising principle of wavelet transform and fast independent component analysis is explained, and the processing of the original EEG data obtained by using MindSet headphones is presented. It is proved that the fast independent component analysis algorithm can successfully separate the ECG artifacts and power-frequency interference signals contained in the original EEG signals, and compare the performance of the two methods at the same time. The advantages of the denoising method based on fast independent component analysis (FICA) are verified.
【作者单位】: 南京理工大学自动化学院;
【基金】:国家自然科学基金(51175266) 江苏省高校自然科学基金(12KJB510008) 江苏省普通高校研究生科研创新计划(CXZZ13-0207)
【分类号】:TN911.4
[Abstract]:In view of the non-stationarity of the original EEG signal and its very easy to be interfered by various signals, the filtering and de-noising method of EEG signal based on wavelet transform and fast independent component analysis is studied, and the method of filtering and denoising based on wavelet transform and fast independent component analysis is studied. The de-noising principle of wavelet transform and fast independent component analysis is explained, and the processing of the original EEG data obtained by using MindSet headphones is presented. It is proved that the fast independent component analysis algorithm can successfully separate the ECG artifacts and power-frequency interference signals contained in the original EEG signals, and compare the performance of the two methods at the same time. The advantages of the denoising method based on fast independent component analysis (FICA) are verified.
【作者单位】: 南京理工大学自动化学院;
【基金】:国家自然科学基金(51175266) 江苏省高校自然科学基金(12KJB510008) 江苏省普通高校研究生科研创新计划(CXZZ13-0207)
【分类号】:TN911.4
【参考文献】
相关期刊论文 前2条
1 王巧兰,季忠,秦树人;基于小波变换的脑电噪声消除方法[J];重庆大学学报(自然科学版);2005年07期
2 周瑛;罗志增;;基于归一化AR模型谱值的运动想像脑电识别[J];华中科技大学学报(自然科学版);2013年S1期
【共引文献】
相关期刊论文 前10条
1 汤宝平;刘文艺;蒋永华;;基于交叉验证法优化参数的Morlet小波消噪方法[J];重庆大学学报;2010年01期
2 周光省;罗志增;高云园;;基于模糊化符号复杂度的脑电运动想象识别算法[J];传感技术学报;2013年05期
3 李永强;逯鹏;王治忠;;近似熵在大鼠状态识别中的应用[J];华侨大学学报(自然科学版);2010年04期
4 和卫星;陈晓平;邵s,
本文编号:2435091
本文链接:https://www.wllwen.com/kejilunwen/wltx/2435091.html