基于图论的认知无线电频谱与功率联合分配算法研究
[Abstract]:With the rapid development of wireless communication technology, the demand for spectrum resources increases sharply. At present, the fixed spectrum allocation strategy seriously restricts the sustainable development of wireless communication and service applications. Cognitive radio (Cognitive Radio, CR) technology can actively detect the wireless communication environment, dynamically access the idle band used by unauthorized users, and realize the sharing of spectrum resources, thus significantly improving the capacity and spectrum efficiency of the communication system. Resource allocation is the key technology of cognitive radio and an important link to realize cognitive radio. This paper mainly studies the joint optimal allocation algorithm of spectrum and power resources based on graph theory model in cognitive radio system. The main work is as follows: (1) the research background and significance of resource allocation are described. This paper summarizes the research status at home and abroad, introduces the cognitive radio resource allocation technology and the basic theory of graph theory. (2) aiming at the problem that the existing graph theory model can not realize the joint allocation of spectrum and power and the low spectrum efficiency, A joint spectrum and power allocation algorithm (called JSPA-IGTM algorithm) based on improved graph theory is proposed. The interference between secondary users is fully considered and the interference between secondary users is quantized in the algorithm model. The interference threshold vector is used to measure the interference degree, and the spectrum and the corresponding power are allocated according to the interference degree. Particle swarm optimization (PSO) is used to realize the optimization process of the joint resource allocation of the JSPA-IGTM algorithm. The simulation results show that compared with the resource allocation algorithm based on the existing graph theory model, the JSPA-IGTM algorithm effectively improves the spectrum efficiency. (3) Particle Swarm Optimization (Particle Swarm Optimization,). PSO) algorithm is easy to fall into the local optimization problem to realize the joint optimal allocation of spectrum and power. An improved algorithm (JSPA-IPH algorithm for short) is proposed to realize the optimal allocation of spectrum and power. This algorithm combines the advantages of PSO algorithm and harmony search (Harmony Search, HS) algorithm, that is, JSPA-IPH algorithm not only has the good global optimization ability of HS algorithm, but also has the characteristics of fast convergence speed of PSO algorithm. The simulation results show that the JSPA-IPH algorithm is well suited to the improved joint resource allocation graph theory model, and the throughput performance of the system is significantly improved.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN925
【相似文献】
相关期刊论文 前10条
1 А.Ш.塔什普拉托夫;王国钦;;驱动机功率的测定方法[J];国外舰船技术(特辅机电设备类);1982年02期
2 韩晓东,陈晓峰;大功率UPS系统设计的基本要素[J];中国金融电脑;2001年03期
3 杜建俊;郭宝;;TD-SCDMA与TD-LTE共模RRU功率配置分析[J];通信企业管理;2014年04期
4 李万益;刘海林;;基于多目标进化算法的WCDMA功率优化配置研究[J];计算机工程与设计;2011年12期
5 张濮;刘越;刘小明;;基于不平衡损耗非线性光纤环镜的双波长功率均衡实验研究[J];中国激光;2005年12期
6 赵腾云;熊少英;刘毓;;受激拉曼散射效应对巩稼民模型中密集波分信道功率转移影响分析[J];宁夏大学学报(自然科学版);2012年04期
7 王英赫;宋梅;陈浩;张英海;;Ad Hoc网络中采用功率调整的单向链路通告策略[J];北京邮电大学学报;2012年05期
8 吕涛;施伟斌;;无线传感器网络自适应功率调整机制研究[J];信息技术;2014年03期
9 于卫波;牛大伟;米志超;董超;;车载网络中基于功率调整的公平性策略[J];电子科技大学学报;2011年05期
10 吕涛;施伟斌;;一种适用于WSN的功率自适应调整方法[J];数据通信;2013年06期
相关会议论文 前3条
1 媄建成;陈伟基;;智能式功率因ex自R請躋系统[A];1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(下册)[C];1995年
2 冯爱华;;第十五章 第三节 功率[A];河北省教师教育学会优秀课题成果论坛论文集[C];2012年
3 梅辉;;WCDMA系统中基站的功率规划问题[A];2005'中国通信学会无线及移动通信委员会学术年会论文集[C];2005年
相关硕士学位论文 前10条
1 张超;采用超级电容的直驱风电机组故障穿越和功率平滑控制[D];内蒙古工业大学;2015年
2 向剑;给定调度功率的风力发电场功率控制[D];重庆大学;2015年
3 孙翊箫;基于图论的认知无线电频谱与功率联合分配算法研究[D];东北大学;2014年
4 贺电;大型风电场短期功率预测研究[D];北京交通大学;2011年
5 王奇佳;认知无线网络的频谱功率联合分配策略研究[D];电子科技大学;2013年
6 金泉;长距离无线mesh网络中链路自适应速率和功率联合调整算法[D];天津大学;2011年
7 高丹丹;基于投影寻踪算法的间歇式电源短期功率预测[D];华北电力大学;2013年
8 刘童玲;激光标刻中激光功率的适时控制算法研究[D];华中科技大学;2007年
9 季小鹏;GSM网络智能优化算法研究[D];北京邮电大学;2012年
10 王维;协作传输系统中功率优化技术研究[D];北京邮电大学;2014年
,本文编号:2463892
本文链接:https://www.wllwen.com/kejilunwen/wltx/2463892.html