当前位置:主页 > 科技论文 > 网络通信论文 >

硅基OLED微显示器驱动技术研究

发布时间:2019-05-29 12:30
【摘要】:硅基OLED微显示器是指把OLED制作在硅片上的一种平板显示器,其尺寸一般小于1英寸。它利用了成熟的CMOS工艺,在单晶硅片上制作驱动电路,并结合OLED视角大、响应速度快、功耗低、全固态等优点,既可应用于个人娱乐设备,又可应用于飞行员的头盔显示器等。是目前平板显示技术的研究热点之一。本论文从硅基OLED微显示器像素电路设计入手,对硅基OLED微显示器的驱动技术进行了研究,主要内容包括:1、像素电路设计由于微显示中像素面积较小,所以OLED的驱动电流很小,为了解决这个问题,本论文提出了一种像素电路。此像素电路由1个PMOS、3个NMOS、1个存储电容、1个OLED和4根信号线组成。且利用Pspice基于CSMC 0.6?m CMOS5V工艺的参数进行了仿真验证。在此像素电路中,OLED仅处于两种状态:发光和不发光。当OLED发光时流过OLED的电流是恒定的,流过的恒定电流是35.38nA。并且此像素电路完全由数字信号控制。2、时间比率灰度调节利用时间比率灰度方法实现灰度等级调节,即通过控制OLED的发光时间来实现不同的灰度。具体实现方法是:利用分子场逐行扫描的方法,在一帧周期内分为6个子场,每个子场的时间是不同的。子场有两种:“开态子场”和“关态子场”,前者指的是该子场中OLED可以发光、后者指的是该子场中OLED始终不发光。所以可以通过控制6个子场中“开态子场”和“关态子场”的数目,实现从0到63级灰度。3、数据处理模块系统设计按照数字集成电路的设计方法,利用Verilog语言对数据处理模块进行了系统设计。此模块可以把输入的RGB数据转化为像素电路所需的信号时序,以实现输入数据的灰度等级与信号时序对应的灰度等级是相同的。并且经过Modelsim的仿真验证,此模块满足要求。4、版图设计遵照MOSIS/ORBIT 2.0U SCNA Design Rules设计规则,利用L-edit软件设计了子像素电路的版图。在像素电路阵列中,扫描线和数据线上的寄生电阻和寄生电容会带来RC延迟,对像素电路的工作产生影响。利用最坏情况分析方法,对四个角的子像素的进行了仿真验证,结果表明:像素电路可以正常工作,像素电路版图设计满足要求。
[Abstract]:Silicon-based OLED microdisplay is a kind of flat panel display which makes OLED on silicon wafer. Its size is generally less than 1 inch. It makes use of mature CMOS technology to fabricate driving circuit on single crystal silicon wafer, and combines the advantages of OLED, such as large angle of view, fast response speed, low power consumption, all-solid state and so on. It can be used not only in personal entertainment equipment, but also in pilot helmet display and so on. It is one of the research hotspots of flat panel display technology at present. This paper starts with the pixel circuit design of silicon-based OLED microdisplay, and studies the driving technology of silicon-based OLED microdisplay. The main contents are as follows: 1, the pixel circuit design is due to the small pixel area in micro-display. Therefore, the driving current of OLED is very small. In order to solve this problem, a pixel circuit is proposed in this paper. The pixel circuit consists of 1 PMOS,3 NMOS,1 memory capacitance, 1 OLED and 4 signal lines. The parameters of Pspice based on CSMC 0.6 CMOS5V process are simulated and verified. In this pixel circuit, OLED is in only two states: luminous and non-luminous. When OLED emits light, the current flowing through OLED is constant, and the constant current flowing through is 35.38nA. And the pixel circuit is completely controlled by the digital signal. 2, the time ratio gray level adjustment is realized by using the time ratio gray level method, that is, different gray levels are realized by controlling the luminous time of OLED. The implementation method is as follows: by using the method of molecular field line-by-line scanning, it is divided into six subfields in a frame period, and the time of each subfield is different. There are two kinds of subfields: "open state subfield" and "off state subfield". The former means that OLED can emit light in the subfield, while the latter means that the OLED in the subfield is never luminous. Therefore, by controlling the number of "open state subfield" and "off state subfield" in six subfields, the grayscale from 0 to 63 can be realized. 3. The data processing module system is designed according to the design method of digital integrated circuit. The data processing module is designed by Verilog language. This module can convert the input RGB data into the signal timing needed by the pixel circuit, so that the gray level of the input data is the same as the gray level corresponding to the signal timing. The simulation results of Modelsim show that the module meets the requirements. 4, the layout design follows the MOSIS/ORBIT 2.0U SCNA Design Rules design rules, and the layout of the sub-pixel circuit is designed by using L-edit software. In pixel circuit array, parasitic resistance and parasitic capacitance on scan line and data line will cause RC delay, which will affect the operation of pixel circuit. The worst-case analysis method is used to simulate and verify the sub-pixels of four angles. The results show that the pixel circuit can work normally and the layout design of pixel circuit meets the requirements.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN873

【相似文献】

相关期刊论文 前10条

1 章琳,楼祺洪;微显示器初现端倪[J];激光与光电子学进展;2001年02期

2 草英;时尚灵动微显示器[J];电子产品世界;2002年11期

3 庞琦;微显示器前景可观[J];光机电信息;2003年05期

4 小平;增长中的微显示器市场[J];光机电信息;2003年10期

5 文青;微显示器[J];光电子技术;1999年03期

6 ;采用普通结构的高清晰度微显示器[J];今日电子;1999年06期

7 李仪;微显示器时代即将来临[J];国外电子测量技术;2000年01期

8 ;前景乐观的微显示器市场[J];光机电信息;2002年08期

9 ;微显示器实现高分辨率——具有高质量成像功能的微型显示器可满足便携设备发展的需要[J];今日电子;1999年01期

10 朱维南;显示技术的新亮点──微显示器[J];电子产品世界;2001年06期

相关会议论文 前1条

1 郑文军;;硅上铁电液晶微显示器[A];广西光学学会2002年学术年会论文集[C];2002年

相关重要报纸文章 前5条

1 苏月琼;微显示器市场呈逐年增长之势[N];中国电子报;2002年

2 张小明;小尺寸显示器件市场升温[N];中国电子报;2002年

3 ALCOS DIGITAL 韩琦 上海大学材料学院 刘丽 博士;LCOS:数字电视推迟 头戴式显示器发力[N];电子资讯时报;2003年

4 周硕;个人显示新品Lumus公司开发眼镜投影仪[N];电子资讯时报;2008年

5 ;东方景虚拟视窗[N];中国计算机报;2002年

相关博士学位论文 前3条

1 季渊;超还原硅基有机发光微显示器研究[D];上海大学;2012年

2 严利民;硅基有机发光二极管微显示器的驱动技术研究[D];上海大学;2014年

3 郭家荣;硅基微显示器关键存储器技术研究[D];上海大学;2014年

相关硕士学位论文 前4条

1 张新华;硅基OLED微显示器驱动技术研究[D];电子科技大学;2014年

2 吴海清;眼镜式微显示器光学系统设计研究[D];长春理工大学;2009年

3 黄磊;新型彩色LCOS头盔微显示器光学系统[D];电子科技大学;2006年

4 宋萍;超高亮度LED在LCoS微显示器中的应用[D];华中科技大学;2006年



本文编号:2487935

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2487935.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户90c56***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com