优化的匹配追踪用于生态声音识别
[Abstract]:In recent years, more and more attention has been paid to the protection of ecological environment. Through the analysis and identification of audio information contained in the natural environment, it can provide data support for environmental monitoring, species survey and other applications. It is of great significance to protect the natural environment and understand the ecological situation. In order to solve the problem of classification and recognition of complex and changeable background noise interference in real environment, this paper proposes an optimized matching tracking (MP) signal decomposition method and a new multi-band signal reconstruction method for ecological sound signal reconstruction, and focuses on the robust ecological sound recognition framework in low signal-to-noise ratio (SNR) scenarios. The research work of this paper mainly includes the following aspects: 1) optimized sparse decomposition of signals. In order to solve the problem of large computational complexity of signal decomposition, an orthogonal matching tracking (OMP). Based on firefly algorithm (GSO) optimization is proposed. Compared with the MP algorithm, the improvement of the OMP algorithm lies in the improvement of the convergence speed, but the disadvantage is that the search atomic dictionary and the atomic orthogonal operation bring a large amount of computation. In this paper, GSO algorithm is used to optimize the process of optimal atomic search, and the fast sparse decomposition of OMP is realized. 2) signal reconstruction of anti-noise. In order to solve the problem that signal sparse reconstruction in noisy environment can not effectively remove noise components, a two-layer signal reconstruction method based on OMP sparse reconstruction and multi-band reconstruction is proposed. In the first layer, OMP sparse decomposition is used to reconstruct the first stage, and the main structure of foreground sound is preserved. In the second layer, the residual components decomposed in the previous stage are divided into frequency bands. According to the frequency distribution of foreground sound and background noise, the gain compensation of the reconstructed signal is carried out, and the second stage reconstruction is completed. The two-layer signal reconstruction method can effectively adaptively remove the non-stationary environmental noise and improve the reconstruction accuracy of foreground sound. 3) Composite feature extraction and classification and recognition framework based on deep reliability network (DBN). According to the time-frequency distribution of ecological sound, a variety of feature sets are extracted from time domain, frequency domain and time-frequency domain to construct composite features, which can preserve the time domain and frequency domain information well, and make up for the shortcomings of the common Mel frequency cepstrum coefficient (MFCC) anti-noise performance. The DBN classifiers with different depth configurations are constructed, and the classification model is established based on the above features to realize the recognition of ecological sound. In this paper, the ecological sound database is constructed by using the 60 kinds of sound samples of bird call, animal call and insect call collected in the field, and the ecological scene in the real environment is simulated by mixing the natural sound into the pure test data according to the different signal-to-noise ratio (SNR). The two-layer signal reconstruction method is used to reconstruct the sound so as to achieve the purpose of denoising. Then, the voice recognition framework based on DBN is used to carry out the comparative experiments under different scenarios and signal-to-noise ratio (SNR). The experimental results show that the two-layer signal reconstruction method based on OMP sparse reconstruction and multi-band reconstruction can effectively suppress noise, thus improving the anti-noise and stability of the recognition framework. Compared with the existing ecological sound recognition methods, the recognition framework proposed in this paper improves the recognition performance of ecological sound in different degrees under different signal-to-noise ratio (SNR) and has good robustness, and is suitable for use in the situation of low signal-to-noise ratio (SNR) noise.
【学位授予单位】:福州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN912.34
【相似文献】
相关期刊论文 前10条
1 赵玉娟;水鹏朗;张凌霜;;基于子空间匹配追踪的信号稀疏逼近[J];信号处理;2006年04期
2 赵玉娟;;分层匹配追踪对信号的稀疏逼近[J];江苏教育学院学报(自然科学版);2007年02期
3 杜小勇;段晓君;;匹配追踪信号分解收敛性的一种证明[J];湖南工业大学学报;2010年01期
4 韩德亮;于凤芹;;基于匹配追踪算法的汉语音节重叠声韵分割[J];计算机工程与设计;2012年07期
5 姚远;梁志毅;;基于压缩感知信号重建的自适应空间正交匹配追踪算法[J];计算机科学;2012年10期
6 曾春艳;马丽红;杜明辉;;前向预测与回溯结合的正交匹配追踪算法[J];华南理工大学学报(自然科学版);2012年08期
7 蒋留兵;黄韬;;一种新的压缩采样匹配追踪算法[J];计算机应用研究;2013年02期
8 黄芳;朱永忠;;基于局部性质的改进正交匹配追踪算法[J];青岛科技大学学报(自然科学版);2013年05期
9 马强;金裕红;;框架理论在匹配追踪算法中的应用[J];计算机与数字工程;2010年12期
10 韩德亮;于凤芹;李亚文;;基于遗传匹配追踪分解的汉语孤立字声韵分割[J];计算机系统应用;2012年02期
相关会议论文 前7条
1 陆媛媛;宋炜;左佳卉;李亭;;基于改进匹配追踪的子波特征能量气藏检测方法[A];中国地球物理2013——第十九专题论文集[C];2013年
2 李辉;;面向图像视频编码的多规模匹配追踪图像表达法[A];信息科学与微电子技术:中国科协第三届青年学术年会论文集[C];1998年
3 李政;罗飞路;;基于匹配追踪的超声回波参数估计方法[A];2009中国仪器仪表与测控技术大会论文集[C];2009年
4 秦晓伟;郭建中;;匹配追踪算法(MP)在超声成像中的研究[A];第二届西安-上海两地声学学术会议论文集[C];2011年
5 于勇凌;张海燕;马世伟;;改进的chirplet匹配追踪在Lamb波信号时频分析中的应用[A];融合与创新:新世纪物理声学的发展——二零一二年度全国物理声学会议论文集[C];2012年
6 高建虎;陈杰;张履谦;;基于压缩感知和EMD的SAR海洋内波探测方法[A];第九届全国信息获取与处理学术会议论文集Ⅱ[C];2011年
7 苏哲;许录平;甘伟;;基于压缩感知的脉冲星轮廓构建算法[A];第二届中国卫星导航学术年会电子文集[C];2011年
相关博士学位论文 前5条
1 杨成;压缩采样中匹配追踪约束等距性分析及其应用[D];复旦大学;2011年
2 曾春艳;匹配追踪的最佳原子选择策略和压缩感知盲稀疏度重建算法改进[D];华南理工大学;2013年
3 杨瑞明;基于压缩采样的比幅测向方法研究[D];电子科技大学;2010年
4 韩晓红;混沌时序非线性去噪方法研究及其应用[D];太原理工大学;2012年
5 李青;优化核方法[D];西安电子科技大学;2007年
相关硕士学位论文 前10条
1 李会龙;转子匹配追踪信息熵故障诊断研究[D];中北大学;2016年
2 杨盼;压缩感知中改进的匹配追踪类算法研究[D];安徽大学;2016年
3 辛一;基于分层匹配追踪及保序稀疏编码的行人识别研究[D];安徽大学;2016年
4 李明;匹配追踪在环境声音事件识别中的应用研究[D];福州大学;2013年
5 欧阳桢;优化的匹配追踪用于生态声音识别[D];福州大学;2014年
6 赵玉娟;基于子空间匹配追踪的信号稀疏逼近[D];西安电子科技大学;2005年
7 任晓馨;压缩感知贪婪匹配追踪类重建算法研究[D];北京交通大学;2012年
8 校午阳;基于多通道匹配追踪算法的时频分析研究及在脑电信号处理中的应用[D];天津医科大学;2012年
9 李亚文;遗传匹配追踪算法的研究与改进[D];江南大学;2011年
10 朱姗姗;压~.感知广义正交匹配追踪算法的研究[D];安徽大学;2015年
,本文编号:2505661
本文链接:https://www.wllwen.com/kejilunwen/wltx/2505661.html