基于麦克风阵列的语音增强算法研究
发布时间:2019-09-29 05:04
【摘要】: 和单个孤立麦克风相比,麦克风阵列在时频域的基础上增加了一个空间域,对来自空间不同方位的信号进行空时频联合处理。因此,它可以弥补单个孤立的麦克风在噪声处理、声源定位跟踪、语音提取分离等方面存在的不足,能够广泛应用于各种具有嘈杂背景的语音通信环境(如会场、多媒体教室、助听器,车载免提电话、战场等),以提高语音通信质量。麦克风阵列研究是阵列信号处理的新方向,具有广阔的市场应用前景。 本论文结合阵列信号处理和语音信号处理的特点,研究了如何利用自适应波束形成技术进行语音增强。即自适应的形成一个波束指向目标声源,并且在干扰源的方位形成零点,达到语音增强的目的。其中,主要研究如何克服阵列模型误差(如声源定位误差,阵列拓扑误差,通道响应误差等)对波束性能的影响,即提高波束的鲁棒性。 论文的第一章是引言,介绍了该领域的研究背景、研究现状和待解决的问题、以及本文的研究内容和创新点等等。 第二章以球面波动方程为基础,建立了基于麦克风阵列的语音信号处理通用模型(the General Signal Model of Microphone Arrays,GSMMA)。和传统的阵列模型相比,GSMMA不再使用窄带和远场假设,将语音信号看作是宽带非平稳信号,并且考虑了各通道由于传播路径的不同引起的幅度衰减差异。传统的阵列模型可以看作是GSMMA的一个特例。 第三章从降低目标声源定位误差出发,研究如何保证自适应波束形成算法的性能,提出了一种基于双重加权的宽带MUSIC声源定位算法(Doubly WeightedBroadband MUSIC,DWB-MUSIC)。DWB-MUSIC以宽带MUSIC算法为基础,在各频点利用子空间分解原理对声源进行定位。算法首先对各频点噪声子空间进行加权,降低单频点定位误差的方差。其次,再利用各频点的信噪比信息,对各频点的定位结果进行二次加权,得到最终的宽带声源定位结果。 第四章提出了一种利用阵列旋转不变性的宽带盲波束算法(BroadbandDeterministic Blind Beamforming,B-DBBF),避开了声源定位问题,在阵列满足旋转不变性的假设下,进行语音增强。针对宽带波束各频点分离序列可能出现的通道互换和幅度模糊,提出了一种基于相邻频点分离序列相关性的通道重排方案,确保分离序列的频域一致性。另外,通过调整权矩阵的模,消除了幅度模糊,使分离的序列没有幅度失真。 第五章研究如何处理一般的方向矢量(或导向矢量steering vector)误差,重点研究了基于对角加载的鲁棒自适应波束形成算法(robust adaptive beamforming,RABF)。本章解决了该类算法的关键问题,即如何选择对角加载因子。在引入一系列假设后,本章推导出了最优对角加载因子的近似解析解。和迭代求解的方法相比,该结果不但降低了运算量,,还揭示了哪些因素可以影响最优加载因子,以及如何影响。在此基础上,对该算法进行了性能分析。 第六章提出了一种基于联合最坏情况性能优化的RABF算法(Joint Worst-CaseRABF,JW-RABF)。针对语音信号非平稳以及算法处理的实时性要求,提出的JW-RABF算法具有对有限样本数效应(finite sample effect)和方向矢量误差的双重鲁棒性。该算法也属于对角加载类算法,和W-RABF不同,JW-RABF通过对目标函数以及限制条件进行联合最坏情况性能优化来确定最优加载因子。本章同样推导出了其最优加载因子的近似解析解。在此基础上,结合频率聚焦技术,提出了宽带JW-RABF算法。该算法在相应频带上形成一个宽带波束,满足波束图随频率的变化在最小二乘意义下最小,并且,还可以有效处理宽带相干干扰源。 第七章对全文进行了总结,比较了提出的各算法的优缺点,分析了存在的不足,提出了相应的解决方案,并且对后期的研究工作进行了展望。
【图文】:
电子科技大学博士学位论文性月目目粤目月恳早月奥耳只月典目目脚草典月典皿卑单皿亘口皿皿皿皿亘皿皿鱼国旦里皿旦旦旦皿鱼鱼鱼旦鱼鱼旦旦旦旦旦旦旦鱼坦鱼鱼鱼鱼鱼里鱼鱼鱼鱼旦国里里旦里巨里里里里里口还有背景噪声、具有方向性的强干扰源,墙壁的回音和反射等,如图1一2所示。这些噪声的统计特性各不相同,特别是具有方向性的强干扰源和墙壁的回音,对语音通信质量的影响很大。强干扰往往可以盖过感兴趣的声音信号,而墙壁的回音则是和目标声源相干的干扰,使用常规的方法处理它们非常困难。台U一M冉U
本文编号:2543705
【图文】:
电子科技大学博士学位论文性月目目粤目月恳早月奥耳只月典目目脚草典月典皿卑单皿亘口皿皿皿皿亘皿皿鱼国旦里皿旦旦旦皿鱼鱼鱼旦鱼鱼旦旦旦旦旦旦旦鱼坦鱼鱼鱼鱼鱼里鱼鱼鱼鱼旦国里里旦里巨里里里里里口还有背景噪声、具有方向性的强干扰源,墙壁的回音和反射等,如图1一2所示。这些噪声的统计特性各不相同,特别是具有方向性的强干扰源和墙壁的回音,对语音通信质量的影响很大。强干扰往往可以盖过感兴趣的声音信号,而墙壁的回音则是和目标声源相干的干扰,使用常规的方法处理它们非常困难。台U一M冉U
本文编号:2543705
本文链接:https://www.wllwen.com/kejilunwen/wltx/2543705.html