基于PSO的ML-PDA算法及其并行实现
本文关键词:基于PSO的ML-PDA算法及其并行实现
更多相关文章: 检测前跟踪 极大似然-概率数据关联 粒子群优化 并行处理
【摘要】:针对密集杂波条件下的目标检测与跟踪问题,开展极大似然-概率数据关联(maximum likelihoodprobabilistic data association,ML-PDA)算法优化与实时计算问题研究。在算法层面,通过在极大化对数似然比(log likelihood ratio,LLR)过程中引入粒子群优化(particle swarm optimization,PSO)方法,并进一步提出基于观测引导的PSO播撒粒子方式,提升算法的计算效率;在实现层面,提出基于图形处理器(graphic processing unit,GPU)的PSO实现策略。仿真实验结果说明了基于观测引导PSO算法搜索的有效性。在GPU平台上实现该算法获得显著的加速比,验证了所提出方法具有工程实时性。
【作者单位】: 电子科技大学电子工程学院;
【关键词】: 检测前跟踪 极大似然-概率数据关联 粒子群优化 并行处理
【基金】:中国博士后科学基金(2015M572463)资助课题
【分类号】:TN953
【正文快照】: 0引言高密度杂波环境中的极低可观测目标跟踪问题一直是困难的研究热点。极低可观测意味着目标回波信号中信号能量与噪声功率比值,即信噪比(signal-to-noise ratio,SNR)很低。在传统的检测后跟踪(track after detect,TAD)算法中,若要维持对低SNR目标的高检测概率,势必会降低检
【相似文献】
中国期刊全文数据库 前10条
1 蒙正中;;一种改进的混合粒子群优化算法[J];桂林工学院学报;2009年03期
2 吴昌友;王福林;马力;;一种新的改进粒子群优化算法[J];控制工程;2010年03期
3 周驰,高海兵,高亮,章万国;粒子群优化算法[J];计算机应用研究;2003年12期
4 高鹰,谢胜利;免疫粒子群优化算法[J];计算机工程与应用;2004年06期
5 张荣沂;一种新的集群优化方法——粒子群优化算法[J];黑龙江工程学院学报;2004年04期
6 高鹰;谢胜利;;混沌粒子群优化算法[J];计算机科学;2004年08期
7 刘钊,康立山,蒋良孝,杨林权;用粒子群优化改进算法求解混合整数非线性规划问题[J];小型微型计算机系统;2005年06期
8 戴冬雪,王祁,阮永顺,王晓超;基于混沌思想的粒子群优化算法及其应用[J];华中科技大学学报(自然科学版);2005年10期
9 窦全胜;周春光;马铭;刘全;;群核进化粒子群优化方法[J];计算机科学;2005年08期
10 范娜;云庆夏;;粒子群优化算法及其应用[J];信息技术;2006年01期
中国重要会议论文全文数据库 前10条
1 张妍;张晓光;王永钢;;几种改进型的粒子群优化算法[A];第一届中国高校通信类院系学术研讨会论文集[C];2007年
2 孙红光;潘毓学;;基于运动目标路径的粒子群优化算法研究[A];第二届全国信息获取与处理学术会议论文集[C];2004年
3 韩毅;唐加福;郭伟宏;刘阳;;混合粒子群优化算法求解多层批量问题(英文)[A];中国运筹学会第八届学术交流会论文集[C];2006年
4 金一粟;梁逸曾;;空间自适应粒子群优化算法的应用研究[A];第九届全国计算(机)化学学术会议论文摘要集[C];2007年
5 汪荣贵;李守毅;孙见青;;一种新的自适应粒子群优化算法及应用[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
6 黄双欢;程良伦;;一种基于粒子群优化的快速图像倾斜角度检测算法[A];中国自动化学会中南六省(区)2010年第28届年会·论文集[C];2010年
7 侯志荣;吕振肃;;基于退火策略的粒子群优化算法[A];2003年中国智能自动化会议论文集(下册)[C];2003年
8 徐俊杰;忻展红;;基于增强型参考位置的粒子群优化模型[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年
9 王亚;于永光;耿玲玲;;一类改进的自适应粒子群优化算法对混沌系统未知参数的估计[A];中国力学大会——2013论文摘要集[C];2013年
10 崔静;邓方;方浩;;基于改进粒子群优化算法的弹道求解方法[A];2013年中国智能自动化学术会议论文集(第三分册)[C];2013年
中国博士学位论文全文数据库 前10条
1 刘华蓥;粒子群优化算法的改进研究及在石油工程中的应用[D];东北石油大学;2012年
2 刘波;粒子群优化算法及其在机电设备中的应用研究[D];中北大学;2011年
3 熊勇;粒子群优化算法的行为分析与应用实例[D];浙江大学;2005年
4 唐贤伦;混沌粒子群优化算法理论及应用研究[D];重庆大学;2007年
5 闫允一;粒子群优化及其在图像处理中的应用研究[D];西安电子科技大学;2008年
6 余炳辉;粒子群优化算法试验研究及扩展[D];华中科技大学;2007年
7 唐贤伦;混沌粒子群优化算法理论及应用[D];重庆大学;2007年
8 徐慧;粒子群优化算法改进及其在煤层气产能预测中的应用研究[D];中国矿业大学;2013年
9 徐星;融合热运动机制的粒子群优化算法研究及其应用[D];武汉大学;2010年
10 刘逸;粒子群优化算法的改进及应用研究[D];西安电子科技大学;2013年
中国硕士学位论文全文数据库 前10条
1 陈卓;粒子群优化算法的改进及在油藏数值模拟中的应用[D];北京建筑大学;2015年
2 白云;基于粒子群优化算法的复杂网络社区挖掘[D];西北农林科技大学;2015年
3 杨艳华;基于粒子群优化支持向量机的网络态势预测模型研究[D];兰州大学;2015年
4 孟亚州;基于粒子群优化OTSU的肺组织分割算法研究[D];宁夏大学;2015年
5 郑博;基于快速排序的多目标粒子群优化算法的研究及应用[D];郑州大学;2015年
6 米永强;非线性规划问题的混合粒子群优化算法研究[D];宁夏大学;2015年
7 李建美;基于自适应变异与文化框架的混沌粒子群优化算法[D];陕西师范大学;2015年
8 彭传勇;广义粒子群优化算法及其在作业车间调度中的应用研究[D];华中科技大学;2006年
9 卢静;粒子群优化算法改进研究[D];渤海大学;2012年
10 江涛;改进的粒子群优化算法[D];吉林大学;2013年
,本文编号:521247
本文链接:https://www.wllwen.com/kejilunwen/wltx/521247.html