当前位置:主页 > 科技论文 > 物理论文 >

无条件稳定FDTD在微波传输线中的应用研究

发布时间:2021-07-15 16:33
  计算电磁学方法近年来在电磁领域得到充分的重视,而时域有限差分法(Finite-Difference Time-Domain Method,FDTD),作为一种高效,精准的数值方法,在各个领域被广泛应用。在高频高速的现代化电磁环境下,利用FDTD方法可以快速计算模拟宽频带响应的电磁特性。但是在实际应用中,由于传统显式时域有限差分格式存在稳定性条件,时间步长的选取将受到空间网格大小的限制,这使得在计算高频、微波、细小结构等问题上将需要大量的迭代次数和计算资源,增加了计算时间。本论文针对这一问题,使用具有较高稳定性隐式差分算法,研究了横电磁波传输线和横电、横磁模式波导的传输特性。具体研究内容如下:1.讨论了时域有限差分法的基本原理,并分析了网格划分方法、共形技术和具体计算流程;推导了FDTD方法的稳定性条件,证明分析了显式差分格式和隐式差分格式在稳定性上存在的差异。2.针对高频情况下,传统电路分析原理将不再适用的情况,引入传输线方程对横电磁波模式的传输线模型进行分析;给出了FDTD对传输线方程差分近似的方法和阻抗匹配边界条件的迭代方程。为了解决显式差分存在的稳定性限制,提出一种传输线方程隐式... 

【文章来源】:哈尔滨工程大学黑龙江省 211工程院校

【文章页数】:84 页

【学位级别】:硕士

【部分图文】:

无条件稳定FDTD在微波传输线中的应用研究


矩形波导模型及计算空间

截面图,矩形波导,横向,截面


5.2 矩形波导横磁(TM)波横向分布仿真算例由第四章节介绍的波导理论可以知道,波导系统在横向场中形成驻波,存在截止特性,可以由横向场分析得出。当纵向的传播系数 β = 0,各分量的场只剩下横向场的三个分量,可以近似认为成波导在纵向上没有传播,仅仅研究横向场,方便于研究截止特性,只有三个场量也方便二维 FDTD 算法的实现。5.2.1 矩形波导模型为了探究矩形波导的截止特性,设计一个矩形波导系统,包括内壁长、宽,壁厚,腔体内材料,波导壁材料。令内壁长边 a = 30mm,短边 b = 20mm,壁厚 5mm。腔体内为真空介质,波导壁为完美电导体(PEC)材料。计算目标物体与计算空间边界为 10 个网格大小。由于完美波导的设定为不泄露电磁波,故在波导壁之外并不存在电磁辐射,也不会产生扰动影响,故计算空间外部均设置为 PEC 边界条件,即给定常数为 0 的狄利克雷边界条件。图 5.13 与图 5.14 为矩形波导的仿真目标模型和计算空间。

【参考文献】:
期刊论文
[1]新型分裂步长时域有限差分法[J]. 林智参,班涛.  现代电子技术. 2015(15)
[2]电导率不为零的麦克斯韦方程的两种分裂时域有限差分方法和分析[J]. 王万补,高理平,时文慧.  科学技术与工程. 2011(06)
[3]IBIS模型的信号完整性研究与仿真应用[J]. 徐文波,保长先,王健.  机电工程. 2011(01)
[4]多时间步长时域有限差分法[J]. 郑阳明,褚庆昕.  电子学报. 2004(09)
[5]A TRANSMITTING BOUNDARY FOR TRANSIENT WAVE ANALYSES[J]. 廖振鹏,黄孔亮,杨柏坡,袁一凡.  Science in China,Ser.A. 1984(10)



本文编号:3286070

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wulilw/3286070.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6ec86***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com