小波包变换和极限学习机相融合的脑电信号识别方法
本文关键词:小波包变换和极限学习机相融合的脑电信号识别方法
更多相关文章: 脑电信号识别 傅里叶变换 小波包变换 极限学习机
【摘要】:为了提高脑电信的识别效果,提出一种小波包变换和极限学习机相融合的脑电信号识别方法.采用傅里叶变换对采集的脑电数据进行去噪处理,用小波包变换方法提取小波节律能量均值和小波包能量熵作为特征量,并用极限学习机进行分类.仿真实验结果表明,极限学习机分类速度快、泛化性能好,相对于其他脑电信号识别方法,能有效地提高脑电信号识别的正确率.
【作者单位】: 武汉学院信息及传播学院;
【关键词】: 脑电信号识别 傅里叶变换 小波包变换 极限学习机
【基金】:湖北省高等学校教学研究项目(2012458)
【分类号】:TN911.7
【正文快照】: 脑电信号属于信噪比低的微弱信号,极易受到各种电信号干扰,具有非平稳性、非线性、节律性等特点[1-2].脑电信号识别实际是一种分类问题,主要包括特征提取和分类器构建两个步骤.特征提取是信号研究问题的关键所在,主要方法有功率谱法、傅里叶变换法、AR模型法、小波分析法等[3-
【相似文献】
中国期刊全文数据库 前10条
1 董盟盟;仲轶;徐洁;戴体俊;刘功俭;;基于小波分析的脑电信号处理[J];电子设计工程;2012年24期
2 李志瑞;张文杰;;通用脑电信号处理——微机系统初探[J];河北师范大学学报;1988年Z1期
3 ;小样本脑电信号(EEG)处理系统[J];北京理工大学学报;1989年02期
4 陈永华;朱林剑;包海涛;孙守林;;一种新型脑电信号的采集方法和应用[J];传感器与微系统;2006年03期
5 黄翠玲;陈新;;脑电信号采集与管理系统的设计与实现[J];计算机与数字工程;2008年09期
6 张雪燕;冯姚震;马敏飞;杨晟刚;;脑电信号的分析和监测[J];电子技术应用;2011年01期
7 ;《小样本脑电信号处理系统》通过部级鉴定[J];北京工业学院学报;1988年03期
8 梅村,何育芬;脑电信号的自适应分段和分类存档[J];北京邮电大学学报;1994年01期
9 梅村,,张玉艳,娄瑜;脑电信号的压缩与恢复[J];北京邮电大学学报;1995年04期
10 沈民奋,黎展程,孙丽莎;小波包熵在脑电信号分析中的应用[J];数据采集与处理;2005年01期
中国重要会议论文全文数据库 前10条
1 薛蕴全;王秋英;王宏;;脑电信号的动态时空响应拓扑图[A];中国仪器仪表学会第三届青年学术会议论文集(上)[C];2001年
2 王裕清;粱平;郭付清;张登攀;;脑电信号诊断专家系统的研究[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年
3 朱林剑;包海涛;孙守林;梁丰;;新型脑电信号采集方法与应用研究[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年
4 许涛;朱林剑;包海涛;;基于思维脑电信号的假手的研究[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册)[C];2006年
5 李爱新;孙铁;郭炎峰;;基于人工神经网络的脑电信号模式分类[A];自动化技术与冶金流程节能减排——全国冶金自动化信息网2008年会论文集[C];2008年
6 童珊;黄华;陈槐卿;;混沌理论在脑电信号分析中的应用[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
7 李凌;曾庆宁;尧德中;;利用两级抗交叉串扰自适应滤波器提取诱发脑电信号[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
8 葛家怡;周鹏;王明时;;睡眠脑电信号样本熵的研究[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(下册)[C];2007年
9 李丽君;黄思娟;吴效明;熊冬生;;基于运动想象的脑电信号特征提取与分类[A];中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集[C];2010年
10 葛家怡;周鹏;王明时;;睡眠脑电信号样本熵的研究[A];天津市生物医学工程学会2007年学术年会论文摘要集[C];2007年
中国重要报纸全文数据库 前1条
1 张文清 记者 王春;意念控制车速及左右转弯前行[N];科技日报;2008年
中国博士学位论文全文数据库 前10条
1 彭宏;普适化脑电信息感知关键问题的研究[D];兰州大学;2015年
2 吴玉鹏;AR谱在皮层痫样脑电信号分析应用[D];河北医科大学;2015年
3 吴畏;基于统计建模的多导联脑电信号时空建模方法研究[D];清华大学;2012年
4 孙宇舸;脑—机接口系统中脑电信号处理方法的研究[D];东北大学;2012年
5 周群;脑电信号同步:方法及应用研究[D];电子科技大学;2009年
6 赵丽;基于脑电信号的脑-机接口技术研究[D];天津大学;2004年
7 李春胜;脑电信号混沌特性的研究与应用[D];东北大学;2011年
8 欧阳高翔;癫痫脑电信号的非线性特征识别与分析[D];燕山大学;2010年
9 缪晓波;基于脑电信号的认知动力学系统研究——线性/非线性方法及动态时—频—空分析[D];重庆大学;2004年
10 张美云;阿尔茨海默病脑电信号多尺度时空定量特征研究[D];天津医科大学;2012年
中国硕士学位论文全文数据库 前10条
1 于洪;基于脑电信号的警觉度估计[D];上海交通大学;2007年
2 蒋洁;基于高性能计算的脑电信号分析[D];燕山大学;2010年
3 张志琴;脑电信号的复杂性分析[D];中南大学;2009年
4 许凤娟;脑电信号采集与分析系统的设计[D];长春理工大学;2011年
5 曹铭;意识障碍患者脑电信号的非线性动力学评价分析[D];杭州电子科技大学;2012年
6 薛吉星;多通道脑电信号采集与处理系统研究[D];华南理工大学;2015年
7 刘静;基于加权排序熵的多通道脑电信号同步算法研究[D];燕山大学;2015年
8 陈泽涛;基于脑电信号分析的AD早期评估系统的设计与实现[D];燕山大学;2015年
9 王欢;基于非平稳时间序列分析方法的脑电信号模式识别[D];苏州大学;2015年
10 王琼颖;脑电信号的非线性动力学分析及其在睡眠分期中的应用[D];哈尔滨工业大学;2015年
本文编号:1108003
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1108003.html