Massive MIMO中基于RTS的检测算法研究
发布时间:2018-01-28 20:40
本文关键词: Massive MIMO 置信度传播 低复杂度 禁忌搜索 出处:《安徽大学》2017年硕士论文 论文类型:学位论文
【摘要】:多输入多输出(MIMO)检测技术发展到今天已经相当成熟了。Massive MIMO技术作为传统 MIMO 技术的扩展已经成为 5G(the 5th Generation mobile communication technology)的核心技术之一,其具有更高的频谱效率和信道容量。然而,在Massive MIMO系统中存在着很多问题,由于众多的天线数目,接收信号复杂,高维度的信道矩阵等,对接收端的信号检测算法提出了更高的要求,希望以较低的复杂度实现良好的性能。基于这种背景,本文重点对适用于Massive MIMO信号检测的主动禁忌搜索(Reactive Tabu Search,RTS)算法进行了详细介绍并在此基础上进一步深入研究,介绍了两种改进方法。RTS算法作为Massive MIMO中比较优秀的检测算法,近年来引起了学者们的高度关注。本文主要就如何进一步提高RTS算法的性能以及改善RTS算法在高阶调制方式下性能表现不佳的问题进行了研究。本文给出了两种基于RTS的改进方法:随机重启主动禁忌搜索(Random Condition Restar-Reactive Tabu Search,RCR-RTS)算法和 RTS-BP(Reactive Tabu search-BeliefPropagation)联合检测算法,并对它们进行了仿真分析。本文首先介绍了 MIMO系统及其信号检测技术的研究背景和面临的现状,并简要的概述了 MIMO系统模型和几种常见的信号检测算法。再详细阐述了适用于Massive MIMO系统下的RTS算法的基本原理和实现流程图,分析了该算法在Massive MIMO信号检测中的优势,并在不同QAM(Quadrature Amplitude Modulation)调制下对该检测算法进行了仿真分析。然后介绍了一种基于RTS的改进方法,即RCR-RTS检测算法,详细论述了对RTS算法的改进,给出了算法的详细流程并进行了仿真分析。该改进方法提高了检测性能,同时也改善了传统RTS算法在高阶调制系统中性能不佳的问题。接着,对标准的BP-GAI(Belief Propagation-Gauss Approximation Interference)算法进行基本分析,将 RTS 算法与BP算法相结合,介绍了另一种基于RTS的改进方法,即RTS-BP联合检测算法,并仿真验证了该改进算法性能较RTS算法得到了提升,也能在一定程度上改善RTS算法在高阶调制系统中性能不佳的情况。最后,对给出的RCR-RTS和RTS-BP这两种检测算法做了性能和复杂度的分析比较,并得出结论,本文介绍的RCR-RTS和RTS-BP检测算法,是从两个完全不同的角度对RTS算法的改进。这两种基于RTS的检测算法都有各自的优点,在Massive MIMO中的性能表现良好,都是非常适用于Massive MIMO系统中的信号检测算法。本文主要以具有低复杂度高性能的主动禁忌搜索(RTS)算法为重点,并在此基础上介绍了两种改进方法,在配备多天线的Massive MIMO系统信号检测中具有良好的性能表现,为Massive MIMO信号检测问题带来了一些新鲜的方法及思路。
[Abstract]:Multiple-Input-Multiple-Output (Mimo) Detection Technology has been developed to a considerable maturity today. Massive MIMO technology as an extension of traditional MIMO technology has become a 5G (. One of the core technologies of the 5th Generation mobile communication. However, there are many problems in Massive MIMO systems, such as the number of antennas, the complexity of received signals, the high dimensional channel matrix and so on. In order to achieve good performance with low complexity, the signal detection algorithm of the receiver is required higher. Based on this background. This paper focuses on active Tabu Search, which is suitable for Massive MIMO signal detection. RTS) algorithm is introduced in detail and further studied on this basis. Two improved methods. RTS algorithm is introduced as a better detection algorithm in Massive MIMO. In recent years, scholars have paid close attention to it. This paper mainly studies how to further improve the performance of RTS algorithm and how to improve the performance of RTS algorithm under high-order modulation. Two improved methods based on RTS are presented:. Random restart active Tabu search (. Random Condition Restar-Reactive Tabu Search. The RCR-RTS) algorithm and the RTS-BP(Reactive Tabu search-BeliefPropagation joint detection algorithm. At first, this paper introduces the research background and current situation of MIMO system and its signal detection technology. The model of MIMO system and several common signal detection algorithms are briefly summarized, and the application of Massive is described in detail. The basic principle and implementation flow chart of RTS algorithm in MIMO system. The advantages of this algorithm in Massive MIMO signal detection are analyzed. And in different QAM(Quadrature Amplitude Modulations). The algorithm is simulated and analyzed under modulation. Then an improved method based on RTS is introduced. That is, the RCR-RTS detection algorithm, the improvement of the RTS algorithm is discussed in detail, the detailed flow of the algorithm is given and the simulation analysis is carried out. The improved method improves the detection performance. At the same time, it also improves the performance of traditional RTS algorithm in high-order modulation system. Standard BP-GAI(Belief Propagation-Gauss Approximation Conference). Algorithm for basic analysis. Combining RTS algorithm with BP algorithm, another improved method based on RTS, RTS-BP joint detection algorithm, is introduced. The simulation results show that the improved algorithm can improve the performance of RTS algorithm and improve the performance of RTS algorithm in high order modulation system to some extent. Finally. The performance and complexity of the two detection algorithms, RCR-RTS and RTS-BP, are analyzed and compared, and the conclusion is drawn that the RCR-RTS and RTS-BP detection algorithms are introduced in this paper. It is the improvement of RTS algorithm from two completely different angles. These two detection algorithms based on RTS have their own advantages, and the performance in Massive MIMO is good. These algorithms are very suitable for signal detection in Massive MIMO system. This paper focuses on the active Tabu search algorithm with low complexity and high performance. On this basis, two improved methods are introduced, which have good performance in signal detection of Massive MIMO system with multiple antennas. It brings some new methods and ideas for Massive MIMO signal detection.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.5
【参考文献】
相关期刊论文 前7条
1 李小文;薛尧;张丁全;;空间调制系统下改进的匹配滤波检测算法[J];光通信研究;2017年01期
2 吴立知;;关于第五代移动通信技术的展望与探讨[J];数字技术与应用;2015年11期
3 康凯;钟子发;燕展;李宁;;用于多用户大规模MISO信号检测的改进主动禁忌搜索算法[J];计算机应用研究;2013年10期
4 阮秀凯;张志涌;;基于连续Hopfield型神经网络的QAM信号盲检测[J];电子与信息学报;2011年07期
5 ;SER bound for ordered ZF-SIC receiver in M-QAM MIMO system[J];The Journal of China Universities of Posts and Telecommunications;2010年01期
6 李会勇;何子述;刘本永;刘钊;;一种多用户VBLAST MIMO系统快速非线性检测算法[J];信号处理;2008年03期
7 刘晓明;陈铸;欧静兰;黄灿辉;;瑞利衰落信道中最大比合并系统性能及多路信号合并算法研究[J];计算机科学;2005年07期
,本文编号:1471510
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1471510.html