当前位置:主页 > 科技论文 > 信息工程论文 >

多小区Massive MIMO干扰对齐技术研究

发布时间:2018-03-18 12:36

  本文选题:干扰对齐 切入点:大规模MIMO 出处:《南京邮电大学》2017年硕士论文 论文类型:学位论文


【摘要】:随着频谱资源的日渐紧缺,同时设备与设备之间的数据交换呈爆发式增长,对无线通信的传输速率提出了更高的要求。大规模多输入多输出(Massive Multiple-Input Multiple-Output,Massive MIMO)作为下一代无线通信的关键技术之一,存在着严重的同频干扰,因此作为干扰管理方式之一的干扰对齐技术成为研究热点。本文对多小区Massive MIMO的干扰对齐技术进行了研究,分别从降低算法复杂度、提高算法通用性、减少信道状态信息(Channel State Information,CSI)交换等方面优化算法。本文主要的研究内容及创新点如下:(1)针对3小区2用户MIMO干扰网络,提出一种线性干扰对齐算法。该算法对联合信道矩阵进行QR分解,再依据各小区等效信道模型的特征,利用最小化干扰泄露以及迫零算法对齐小区间以及小区内干扰,每用户能够实现其信道空间维度1/3的自由度。仿真结果表明,该算法能够在保证系统容量的同时大大降低算法复杂度。(2)针对多小区多用户Massive MIMO干扰网络,基于下行干扰对齐提出一种迭代干扰对齐算法(SLRINR IA)。该算法首先将干扰划分为主干扰和次干扰,然后依据次主干扰比以及干扰信道CSI设计接收干扰抑制矩阵,以最大化SLRINR为准则设计发送预编码矩阵,且将联合预编码所需的CSI交换限制在单个小区内,有效提高用户SINR并降低系统的实现复杂度。仿真结果表明,该算法能有效抑制小区内和小区间干扰,并能快速收敛。(3)将多小区分簇的思想引入到SLRINR IA上,提出分簇式干扰对齐算法。该算法首先依据小区相互间的干扰强度,以最大化簇内干扰为准则对小区进行分簇。然后采取多层干扰管理措施,即簇内采用考虑多个主干扰源的SLRINR IA,而簇间采用不迭代的交替最小化干扰对齐算法。仿真结果表明,该算法在保证系统容量的同时进一步减少CSI的交换量,大大降低系统的实现复杂度。
[Abstract]:With the increasing shortage of spectrum resources, the data exchange between equipment and equipment has increased explosively. As one of the key technologies of the next generation wireless communication, there is serious co-frequency interference. Therefore, as one of the interference management methods, interference alignment technology has become a hot topic. In this paper, the interference alignment technology of multi-cell Massive MIMO is studied, which can reduce the complexity of the algorithm and improve the generality of the algorithm. The main contents and innovations of this paper are as follows: (1) for 3 cell 2 user MIMO interference networks, the main research contents and innovations are as follows: 1. In this paper, a linear interference alignment algorithm is proposed, in which the joint channel matrix is decomposed by QR. According to the characteristics of the equivalent channel model of each cell, the minimum interference leakage and zero-forcing algorithm are used to align the inter-cell and intra-cell interference. The simulation results show that the algorithm can greatly reduce the complexity of the algorithm while ensuring the capacity of the system. (2) for multi-cell and multi-user Massive MIMO jamming networks, the simulation results show that the proposed algorithm can achieve the degree of freedom of its channel space dimension 1/3. An iterative interference alignment algorithm based on downlink interference alignment is proposed. The algorithm divides the interference into primary interference and secondary interference, and then designs the received interference suppression matrix according to the secondary principal interference ratio and the interference channel CSI. The precoding matrix is designed with maximization SLRINR as the criterion, and the CSI exchange required by joint precoding is limited to a single cell, which effectively increases the user SINR and reduces the complexity of the system. The simulation results show that, The algorithm can effectively suppress intra-cell and inter-cell interference, and can quickly converge. 3) the idea of multi-cell clustering is introduced into SLRINR IA, and a clustering interference alignment algorithm is proposed. Firstly, the algorithm is based on the intensity of interference between cells. Taking the maximization of intra-cluster interference as the criterion, the cell is divided into clusters, and then multi-layer interference management measures are adopted, that is, the SLRINR IAs with multiple main interference sources are adopted in the cluster, and the non-iterative alternating minimization interference alignment algorithm is used among the clusters. The simulation results show that, The algorithm can reduce the exchange capacity of CSI and reduce the complexity of the system.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN919.3

【参考文献】

相关期刊论文 前3条

1 谢显中;徐冰;雷维嘉;马彬;;三小区环境中基于三角分解的低复杂度干扰对齐算法[J];电子与信息学报;2013年05期

2 卢华兵;谢显中;马彬;雷维嘉;;多天线两小区蜂窝系统的低开销线性干扰对齐算法[J];信号处理;2012年08期

3 王敞;陈增强;袁著祉;;基于遗传算法的K均值聚类分析[J];计算机科学;2003年02期



本文编号:1629606

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1629606.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3307c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com