基于无线表面肌电信号采集的上肢动作识别
发布时间:2018-04-09 02:11
本文选题:表面肌电 切入点:信号采集 出处:《北京生物医学工程》2016年06期
【摘要】:目的为识别上肢动作并应用于人机交互领域以及为相关患者提供上肢康复训练,设计一个无线表面肌电信号采集及识别系统。方法系统主要由硬件部分与软件部分组成。硬件设计方面,由增强型80C51作为各个模块的控制中心。贴片电极采集的肌电信号,经仪表放大器AD8422放大处理,并进行A/D转换,最后通过无线方式将信号发送给接收盒并传送至PC。软件设计方面,在VC平台下,通过均方根、自回归系数提取特征值,利用支持向量机算法进行动作模式识别。结果设备的采集部分体积为37 mm×27 mm×15 mm,可方便地实现穿戴式,上位机部分则可以满足对信号的各种分析以及作为人机交互界面。结论该系统可实现对患者的康复训练,也可扩展到游戏娱乐。
[Abstract]:Objective to design a radio surface electromyography (EMG) acquisition and recognition system for the purpose of identifying upper limb movements and applying them to the field of human-computer interaction and providing rehabilitation training for related patients.Methods the system consists of hardware and software.In hardware design, enhanced 80C51 is used as the control center of each module.The electromyography (EMG) signals collected by the patch electrode are amplified by the instrument amplifier (AD8422) and converted into A / D. Finally, the signals are sent to the receiving box and transmitted to the PCs by wireless means.In the aspect of software design, in VC platform, the feature value is extracted by root mean square and autoregressive coefficient, and the action pattern recognition is carried out by support vector machine (SVM) algorithm.Results the volume of the acquisition part of the equipment is 37mm 脳 27mm 脳 15mm, which can be easily wearable, and the upper computer can satisfy all kinds of signal analysis and serve as the man-machine interface.Conclusion the system can achieve rehabilitation training for patients, but also can be extended to games and entertainment.
【作者单位】: 上海理工大学医疗器械与食品学院;上海健康医学院医疗器械学院;
【基金】:上海市自然科学基金(14ZR1440100)资助
【分类号】:R49;TN911.7
【相似文献】
相关硕士学位论文 前2条
1 吴齐云;基于Kinect的上肢运动康复交互系统研究[D];广东工业大学;2016年
2 高晓阳;基于多模态交互和反馈的虚拟康复系统研究[D];燕山大学;2016年
,本文编号:1724375
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1724375.html