一种柔性形态学参数对称对数图像处理新算法
发布时间:2018-04-09 14:37
本文选题:合成孔径雷达影像 切入点:斑点噪声 出处:《西安电子科技大学学报》2017年05期
【摘要】:合成孔径雷达成像过程中产生的固有随机相干斑噪声严重影响图像质量,因此对相干斑噪声的抑制研究具有重要意义.针对传统相干斑噪声的抑制方法不能兼顾去除斑点噪声和保护图像纹理信息的问题,笔者提出一种柔性形态学参数对称对数图像处理新算法.该算法结合柔性形态学顺序统计量的灵活性与参数对称的对数图像处理模型自适应处理图像负值部分的特性,抑制合成孔径雷达影像斑点噪声,并且能够较好地保护图像纹理及细节信息.为验证新算法的去噪性能,将其与已有的一些滤波算法的滤波效果比较,并利用抑斑图像质量评价指标,评价新算法滤波性能.实验结果表明,该算法在抑制斑点噪声的同时很好地保留了图像细节信息,且其滤波效果优于现有的合成孔径雷达影像斑点噪声抑制算法.
[Abstract]:The inherent random speckle noise produced in synthetic Aperture Radar (SAR) imaging seriously affects the image quality, so it is of great significance to study the suppression of speckle noise.Aiming at the problem that the traditional method of speckle noise suppression can not be used to remove speckle noise and protect the texture information of image, a new algorithm of symmetrical logarithmic image processing with flexible morphological parameters is proposed in this paper.This algorithm combines the flexibility of flexible morphological sequence statistics and the characteristic of logarithmic image processing model with parameter symmetry to adaptively process the negative part of the image to suppress the speckle noise of synthetic aperture radar (SAR) images.And can better protect the image texture and detail information.In order to verify the denoising performance of the new algorithm, the filtering performance of the new algorithm is compared with that of some existing filtering algorithms, and the filtering performance of the new algorithm is evaluated by using the quality evaluation index of the speckle suppression image.The experimental results show that the algorithm not only can suppress speckle noise but also retain the image detail information, and its filtering effect is better than that of the existing SAR image speckle suppression algorithm.
【作者单位】: 西安电子科技大学通信工程学院;
【基金】:国家自然科学基金资助项目(61173088) 西安市高技术创新资助项目(CX1248(5)) 高等学校学科创新引智计划(“111计划”)资助项目(B08038)
【分类号】:TN957.52
【相似文献】
相关期刊论文 前1条
1 ;《通讯对抗》2013年总目次[J];通信对抗;2013年04期
,本文编号:1726843
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1726843.html